Molecular Characterization of Nonstructural Protein NS38 of Grass Carp Reovirus

Ling SHAO1,2, Chao FAN1,2, Ewa Maj† and Qin FANG1**

(1. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; 2. Graduate School of the Chinese Academy of Sciences, Beijing 100039, China)

Abstract: Viral nonstructural proteins in both enveloped and non-enveloped viruses play important roles in viral replication. Protein NS38 of Grass carp reovirus (GCRV), has been deduced to be a non-structural protein, and, consistent with other reoviruses, is considered to cooperate with the NS80 protein in viral particle assembly. To investigate the molecular basis of the role of NS38, a complete protein was expressed in E. coli for the first time. It was found that there is a better expression of NS38 induced with IPTG at 28 °C rather than 37 °C. In addition, the antiserum of NS38 prepared with purified fusion protein and injected into rabbit could be used for detecting NS38 protein expression in GCRV infected cell lysate, while there is not any reaction crossed with purified virus particle, confirming NS38 is not a component of the viral structural protein. The result reported in this study will provide evidence for further viral protein-protein and protein-RNA interaction in dsRNA viruses replication.

Key words: Grass carp reovirus (GCRV); Nonstructural protein NS38; Recombinant expression
of the Mammalian orthoreoviruses (MRV) has indicated that the nonstructural protein σNS, together with another nonstructural protein μNS and protein σ3, can associate with mRNA molecules to form single stranded RNA-containing complexes (ssRCCs)[4, 9]. Some investigations have implicated that σNS is a minimal viral component required to form viral inclusions with μNS, which then recruits other reovirus proteins and RNA to initiate viral genome replication[4]. How the non-structural proteins, such as μNS and σNS, are interacting and affecting each other during viral assembly and replication is still unclear. Therefore, further studies on these proteins is necessary to revealing their functions during the viral life cycle.

Similar to other members of the Reoviridae family, GCRV is an icosahedral particle with a diameter of about 800 Å, composing a core and outer capsid shell[6]. The virus replicates well in the CIK (Ctenopharyngodon idellus kidney) cell line at 25–30 °C and can produce a large syncytia in its sensitive cells[10, 25]. Among the seven proposed genera (A to G) of aquareoviruses[22], GCRV has been characterized the best so far. Sequence and homology alignment analyses indicate that there is great similarities with Mammalian reovirus (MRV) at the protein level[2]. Many investigations have been made on the structure proteins of GCRV[11, 12, 23], but less is known regarding the characteristics of the non-structure proteins. To understand the molecular basis of non structural protein NS38, a full frame protein was expressed in E.coli for the first time. Our results indicated that NS38 has a better expression at 28°C with IPTG induction. In addition, it was shown that the NS38 protein of GCRV can not be detected in GCRV infected cells, indicating it is not a component of the viral structural protein assembly. The result provided in this experiment will lay a foundation for further investigation of the function of NS38 during viral assembly and replication.

MATERIALS AND METHODS

Cell and Virus

CIK (Ctenopharyngodon idellus kidney) cell line, which has been established by Zuo et al. for many years[25], was prepared for proliferating Grass carp reovirus (GCRV). GCRV 873 stain was isolated from Shaoyang, Hunan province in China and maintained in the author’s laboratory. The methods related to cell culture and virus infection and replication are as described previously[10].

Genome structural analysis of GCRV S9 segment

Sequence analysis of GCRV segment 9 was performed using the local-BLAST and Clustal-W programs implemented in the DNATools package. Analysis of protein hydrophobicity profiles and secondary structures were carried out by using the Protean tool of the DNASTar software package[15].

Construction and expression of recombinant plasmid

The amplification of GCRV Segment 9 gene was carried out by standard RT-PCR. Two primers were designed based on GenBank sequence (AF403395). The pair of primers contained specific restriction enzyme digestion sites according to the multiple cloning sites supplied by the expression vector pRSET-A. The sense primer was: 5’-CATGGATCC TACCGATTGACACCATC-3’, the bases underlined are the enzyme digestion site of BamH I; the anti-sense primer was: 5’-GCTGAATTC ATAGCTCAGAGCGCATG-3’, the bases underlined are the enzyme digestion site of EcoR I. The conditions for thermal cycling parameters were as follows: one cycle
of denaturation (94 °C, 3 min) followed by 35 cycles of denaturation (94 °C, 30 sec), annealing (52 °C, 1 min) and extension (72 °C, 1 min and 30 sec). Final extension step was at 72 °C for 10 min.

After separating and purifying the RT-PCR amplified GCRV S9 segment from the agarose gels using DNA gel extraction and PCR clean-up kits (Hangzhou, China), the S9 segment was then ligated into pRSET-A vector (Invitrogen, Carlsbad, USA) based on the specific matching enzyme digest sites. The ligated products were transformed into DH5α cells for recombinant plasmid screening. Recombinant clones were confirmed by both restriction enzyme digestion and PCR amplification, which were also confirmed by sequencing (Invitrogen Biotechnology Inc, Shanghai, China).

Identified positive recombinants named as pR/GCRVS9 were transformed into BL21(DE3) pLysS cells (Invitrogen, Carlsbad, USA) for further expression analysis. Recombinant clones were confirmed by both restriction enzyme digestion and PCR amplification, which were also confirmed by sequencing (Invitrogen Biotechnology Inc, Shanghai, China).

Preparation of antiserum against GCRV NS38 protein

Antiserum was generated by immunizing New Zealand white rabbits with a mixed emulsion of 450µg purified NS38 antigen and Freund’s complete adjuvant (FCA). The first injection was conducted subcutaneously and two intramuscular booster injections were conducted at intervals of two weeks using the same method. Ten days after the third immunization, the immune rabbits were bled, and separated sera were stored at −30 °C for later use. The titer of prepared NS38 antibody was tested utilizing the ELISA method.

SDS-PAGE and Western blotting Analysis

Samples of expressed supernatant and pellet of cell lysate as well as other testing proteins were resuspended in 2×SDS-PAGE loading buffer, and then subjected to SDS-PAGE. Proteins were visualized by using Coomassie blue R-250 (Sigma, USA). His-tag antibodies (mouse) and rabbit anti-NS38 serum were used to detect the expression of recombinant protein by western blotting analysis. Briefly, tested protein samples were subjected to 10% SDS-PAGE, and then were transferred to a PVDF (polyvinylidene Fluoride) transfer membrane by using Semi-dry transfer cell following the instrument’s instruction (Bio-Rad). After incubating with first and secondary antibody, the reacted PVDF membrane was developed by using AP substrate solution (NBT/BCIP).

RESULTS

Genome structure analyses of protein NS38

The protein NS38 coded by GCRV s9 segment consists of 352 amino acids with a molecular mass of about 38kDa. Blast analyses suggested that there is about 23% similarities between NS38 and σNS of MRV at the protein level. secondary structure analysis of NS38 (Fig.1), predicted about 40% of the amino acid residues formed alpha helices, and 49% amino acid residues formed beta sheets. The remaining regions were formed turned and coiled structures. It has been reported that the σNS protein in MRV isolated from infected cells is able to bind to ssRNA.
strong similarity in the hydrophilicities for the two proteins, suggests NS38 may play a similar role to \(\sigma \)NS in the viral life cycle. However, there is a less predicted alpha helix conformation in \(\sigma \)NS in MRV, indicating there are some structural dissimilarities between the NS38 and \(\sigma \)NS proteins which may be a consequence of the different host cells of MRV and GCRV.

Construction of recombinant plasmid of GCRV Segment 9

To analyze the NS38 protein, we first amplified the 1.1kb GCRV S9 segment using RT-PCR, which was performed by using the selected primer pairs as indicated in the Material and Methods section. The PCR product is shown in Fig. 2A, and is well matched with its predicted value. The pRSET-A vector containing a T7 promoter was chosen for constructing a recombinant plasmid. Its N-terminal polyhistidine makes it convenient for further purification. The amplified S9 fragment and pRSET-A vector were digested with \(\text{BamH} \) I and \(\text{EcoR} \) I respectively, and then ligated by T4 DNA ligase overnight. After transformation, positive plasmid pR/GCRV-S9 was identified by both enzyme digestion and PCR amplification as shown in Fig. 2B, which shows the values correspond well with their predicted size. The recombinants also confirmed by sequence analysis (data not shown).

Time course expression of recombinant NS38 and western blot analysis

To investigate and analyze recombinant expressed protein, the constructed recombinant plasmid pR/GCRV S9 was transformed into BL21(DE3)plysS cells. We first determined expression by using 1mmol/L IPTG for induction at 37°C for 1, 3, 5 h respectively (Fig.3A). To confirm the expressed product was the fusion protein of interest, Western blot analysis utilizing his-tag antibody was performed. The expressed his-tag fusion protein was about 41kDa,
which is consistent with the predicted value. In addition, no obvious band appeared in the cell lysate supernatant samples. The result is shown in Fig.3A and clearly indicates that the expressed protein appeared in insoluble form and could link to anti-his-tag antibody, suggesting that the expressed NS38 is a his-tag fusion protein.

For improving the yield of expression, we further set up time course expression with IPTG induced at 28°C based on optimum culture temperature for GCRV proliferation[10]. Fig.3B shows there is improved expression induced by IPTG at 28°C compared to 37°C[9], and Western blot confirmed the identity of the expressed protein (Fig.3B'). The result suggests that the recombinant expression of the protein NS38 may correspond to the viral replication econiche in infected cells.

Purification and specificity analysis of expressed protein NS38

In order to perform functional assays of the nonstructural protein of GCRV, the purification of the NS38 protein is of great importance. Because the
pRSET vector contains a 6 tandem histidine peptide
Tag in its N terminal, we can make full use of its
distinctive high affinity to probond resin for protein
purification. The purified NS38 protein by using
denaturing condition was shown in Fig.4A.

Western blotting analysis was conducted to further
determining the specificity of the expressed fusion
protein and its immunologically binding to the
nonstructural protein NS38 during GCRV replication.
The result demonstrated that the prepared antibody
could specifically bind to the expressed NS38 protein
in E. coli. Moreover, the NS38 expressed in GCRV
infected cells could be detected by prepared
polyclonal rabbit anti-NS38-serum (Fig. 4B). No
NS38 protein could be detected in purified GCRV
particle, indicating NS38 is a nonstructural protein.

DISCUSSION

In this report, we expressed the NS38 protein for
the first time and found that the level of expression at
28 °C was much higher than that of inducing
expression at 37 °C, which is consistent with our
previous study on expression of another nonstructural
protein(NS80) of GCRV[9]. As previously reported,
GCRV replicates well in the CIK (Ctenopharyngodon
idellus kidney) cell line between 25-30 °C[10], the
resulted temperature at 28 °C for recombinant
expression of non-structure protein NS38 suggested
the expression of nonstructure protein in vitro may
correspond well with GCRV replication conditions in
infected host cells.

Whereas structural proteins are component of the
composed viral particle, non-structural proteins only
occur in the virus replication cycle in infected host
cells. Therefore it is interesting to note that the yield
of recombinant expression of structure protein is much
higher than that of whole frame expression of
nonstructural protein in our current studies[8, 9, 23].
However, for truncated expression of non-structural
protein NS80C, high level expression can be achieved,
suggesting a toxin domain might be located in
N-terminal region of NS80. In such a case, to map
functional domain of NS38 need to be conducted in
further study.

Earlier studies pointed out that the σNS protein
formed small spherical or triangular reovirus-specific
particles that played an important role in dsRNA
synthesis in infected cells [14]. The interaction among
σNS, μσNS and core protein have indispensable role
in the formation of viral inclusions as well as
recruiting other viral proteins and RNA to combine
into complexes for replication and assembly [3, 5, 13, 21, 24].
Understanding the exact mode by which σNS interacts
with other proteins in an infected cell should provide
additional insight toward elucidating its possible
function in mRNA binding and particle assembly in
reovirus replication [3, 4, 13]. Compared to reovirus
structural protein [7, 17, 18], the molecular mechanism of
non-structural protein in the reovirus life cycle is less
understood [1]. The result reported in this study
provides information for further functional study of
NS38 and its interaction with other nonstructural and
structural proteins or RNA in dsRNA virus replication
and assembly.

Acknowledgments

We thank Xiao-yun Sun for assistance with this work.

References

Formation of the factory matrix is an important, though
not a sufficient function of nonstructural protein μNS

