-
Ackermann M, Sarmiento M, Roizman B. 1985. Application of antibody to synthetic peptides for characterization of the intact and truncated alpha 22 protein specified by herpes simplex virus 1 and the R325 alpha 22-deletion mutant. J Virol, 56 (1): 207-215.
-
Advani S J, Brandimarti R, Weichselbaum R R, et al. 2000. The disappearance of cyclins A and B and the increase in activity of the G(2)/M-phase cellular kinase cdc2 in herpes simplex virus 1-infected cells require expression of the alpha22/U (S)1.5 and U (L)13 viral genes. J Viro, l 74 (1):8-15.
-
Advani S J, Weichselbaum R R, Roizman B. 2001. cdc2 cyclin-dependent kinase binds and phosphorylates herpes simplex virus 1 U(L)42 DNA synthesis processivity factor. J Virol, 75 (21): 10326-10333.
doi: 10.1128/JVI.75.21.10326-10333.2001
-
Advani S J, Weichselbaum R R, Roizman B. 2003. Herpes simplex virus 1 activates cdc2 to recruit topoiso-merase Ⅱ alpha for post-DNA synthesis expression of late genes. Proc Natl Acad Sci U A, 100 (8): 4825-4830.
doi: 10.1073/pnas.0730735100
-
Asai R, Ohno T, Kato A, et al. 2007. Identification of proteins directly phosphorylated by UL13 protein kinase from herpes simplex virus 1. Microbes Infect, 9 (12-13): 1434-1438.
doi: 10.1016/j.micinf.2007.07.008
-
Bastian T W, Rice S A. 2009. Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase Ⅱ modification and viral late gene expression. J Virol, 83 (1): 128-139.
doi: 10.1128/JVI.01954-08
-
Blaho J A, Zong C S, Mortimer K A. 1997. Tyrosine phosphorylation of the herpes simplex virus type 1 regulatory protein ICP22 and a cellular protein which shares antigenic determinants with ICP22. J Virol, 71 (12): 9828-9832.
-
Booher R N, Holman P S, Fattaey A. 1997. Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J Biol Chem, 272(35):22300-22306.
doi: 10.1074/jbc.272.35.22300
-
Brandt C R, Kolb A W. 2003. Tyrosine 116 of the herpes simplex virus type 1 IEalpha22 protein is an ocular virulence determinant and potential phosphorylation site. Invest Ophthalmol Vis Sci, 44 (11): 4601-4607.
doi: 10.1167/iovs.03-0582
-
Bruni R, Roizman B. 1998. Herpes simplex virus 1 regulatory protein ICP22 interacts with a new cell cycle-regulated factor and accumulates in a cell cycle-dependent fashion in infected cells. J Virol, 72 (11): 8525-8531.
-
Corden J L, and Patturajan M. 1997. A CTD function linking transcription to splicing. Trends Biochem Sci, 22 (11): 413-416.
doi: 10.1016/S0968-0004(97)01125-0
-
Cun W, Guo L, Zhang Y, et al. 2009. Transcriptional regulation of the Herpes Simplex Virus 1alpha-gene by the viral immediate-early protein ICP22 in association with VP16. Sci China C Life Sci, 52 (4): 344-351.
doi: 10.1007/s11427-009-0051-2
-
Dai-Ju J Q, Li L, Johnson L A, et al. 2006. ICP27 interacts with the C-terminal domain of RNA polymerase Ⅱ and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection. J Virol, 80 (7): 3567-3581.
doi: 10.1128/JVI.80.7.3567-3581.2006
-
Durand L O, Advani S J, Poon A P, et al. 2005. The carboxyl-terminal domain of RNA polymerase Ⅱ is phosphorylated by a complex containing cdk9 and infected-cell protein 22 of herpes simplex virus 1. J Virol, 79 (11): 6757-6762.
doi: 10.1128/JVI.79.11.6757-6762.2005
-
Durand L O, Roizman B. 2008. Role of cdk9 in the optimization of expression of the genes regulated by ICP22 of herpes simplex virus 1. J Virol, 82(21):10591-10599.
doi: 10.1128/JVI.01242-08
-
Egloff S, Murphy S. 2008. Role of the C-terminal domain of RNA polymerase Ⅱ in expression of small nuclear RNA genes. Biochem Soc Trans, 36(Pt 3): 537-539.
-
Fraser K A, Rice S A. 2005. Herpes simplex virus type 1 infection leads to loss of serine-2 phosphorylation on the carboxyl-terminal domain of RNA polymerase Ⅱ. J Virol, 79 (17): 11323-11334.
doi: 10.1128/JVI.79.17.11323-11334.2005
-
Fraser K A, Rice S A. 2007. Herpes simplex virus immediate-early protein ICP22 triggers loss of serine 2-phosphorylated RNA polymerase Ⅱ. J Virol, 81 (10): 5091-5101.
doi: 10.1128/JVI.00184-07
-
Fu W, Begley J G, Killen M W, et al. 1999. Anti-apoptotic role of telomerase in pheochromocytoma cells. J Biol Chem, 274 (11): 7264-7271.
doi: 10.1074/jbc.274.11.7264
-
Hagglund R, Munger J, Poon A P, et al. 2002. U(S)3 protein kinase of herpes simplex virus 1 blocks caspase 3 activation induced by the products of U(S)1.5 and U(L)13 genes and modulates expression of transduced U(S)1.5 open reading frame in a cell type-specific manner. J Virol 76 (2): 743-754.
doi: 10.1128/JVI.76.2.743-754.2002
-
Jacob R J, Roizman B. 1977. Anatomy of herpes simplex virus DNA Ⅷ. Properties of the replicating DNA. J Virol, 23 (2): 394-411.
-
Kawaguchi Y, Van Sant C, Roizman B. 1997. Herpes simplex virus 1 alpha regulatory protein ICP0 interacts with and stabilizes the cell cycle regulator cyclin D3. J Virol, 71 (10): 7328-7336.
-
Leopardi R, Ward P L, Ogle W O, et al. 1997. Association of herpes simplex virus regulatory protein ICP22 with transcriptional complexes containing EAP, ICP4, RNA polymerase Ⅱ, and viral DNA requires posttranslational modification by the U(L)13 proteinkinase. J Virol, 71 (2): 1133-1139.
-
Long M C, Leong V, Schaffer P A, et al. 1999. ICP22 and the UL13 protein kinase are both required for herpes simplex virus-induced modification of the large subunit of RNA polymerase Ⅱ. J Virol, 73 (7): 5593-5604.
-
Lu H, Flores O, Weinmann R, et al. 1991. The nonphosphorylated form of RNA polymerase Ⅱ preferentially associates with the preinitiation complex. Proc Natl Acad Sci USA, 88 (22): 10004-10008.
doi: 10.1073/pnas.88.22.10004
-
Markovitz N S. 2007. The herpes simplex virus type 1 UL3 transcript starts within the UL3 open reading frame and encodes a 224-amino-acid protein. J Virol 81 (19): 10524-10531.
doi: 10.1128/JVI.00123-07
-
Markovitz N S, and Roizman B. 2000. Small dense nuclear bodies are the site of localization of herpes simplex virus 1 U(L)3 and U(L)4 proteins and of ICP22 only when the latter protein is present. J Virol, 74 (1): 523-528.
doi: 10.1128/JVI.74.1.523-528.2000
-
Mitchell C, Blaho J A, McCormick A L, et al. 1997. The nucleotidylylation of herpes simplex virus 1 regulatory protein alpha22 by human casein kinase Ⅱ. J Biol Chem, 272 (40): 25394-25400.
doi: 10.1074/jbc.272.40.25394
-
Ng T I, Chang Y E, Roizman B. 1997. Infected cell protein 22 of herpes simplex virus 1 regulates the expression of virion host shutoff gene U (L)41. Virology, 234 (2): 226-234.
doi: 10.1006/viro.1997.8659
-
O'Toole J M, Aubert M, Kotsakis A, et al. 2003. Mutation of the protein tyrosine kinase consensus site in the herpes simplex virus 1 alpha22 gene alters ICP22 posttranslational modification. Virology, 305 (1): 153-167.
doi: 10.1006/viro.2002.1746
-
Parker L L, Sylvestre P J, Byrnes M J 3rd, et al. 1995. Identification of a 95-kDa WEE1-like tyrosine kinase in HeLa cells. Proc Natl Acad Sci USA, 92 (21): 9638-9642.
doi: 10.1073/pnas.92.21.9638
-
Payne J M, Laybourn P J, Dahmus M E. 1989. The transition of RNA polymerase Ⅱ from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit Ⅱa. J Biol Chem, 264 (33): 19621-19629.
-
Peng J, Zhu Y, Milton J T, et al. 1998. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev, 12 (5): 755-762.
doi: 10.1101/gad.12.5.755
-
Poon A P, and Roizman B. 2005. Herpes simplex virus 1 ICP22 regulates the accumulation of a shorter mRNA and of a truncated US3 protein kinase that exhibits altered functions. J Virol, 79 (13): 8470-8479.
doi: 10.1128/JVI.79.13.8470-8479.2005
-
Prod'hon C, Machuca I, Berthomme H, et al. 1996. Characterization of regulatory functions of the HSV-1 immediate-early protein ICP22. Virology, 226 (2): 393-402.
doi: 10.1006/viro.1996.0667
-
Rice S A, Long M C, Lam V, et al. 1995. Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase Ⅱ and establishment of the normal viral transcription program. J Virol, 69 (9): 5550-5559.
-
Rice S A, Long M C, Lam V, et al. 1994. RNA polymerase Ⅱ is aberrantly phosphorylated and localized to viral replication compartments following herpes simplex virus infection. J Virol, 68 (2): 988-1001.
-
Spencer C A, Dahmus M E, Rice S A. 1997. Repression of host RNA polymerase Ⅱ transcription by herpes simplex virus type 1. J Virol, 71 (3): 2031-2040.
-
Steinmetz E J. 1997. Pre-mRNA processing and the CTD of RNA polymerase Ⅱ: the tail that wags the dog? Cell, 89 (4): 491-494.
doi: 10.1016/S0092-8674(00)80230-5
-
Stelz G, Rucker E, Rosorius O, et al. 2002. Identification of two nuclear import signals in the alpha-gene product ICP22 of herpes simplex virus 1. Virology, 295 (2): 360-370.
doi: 10.1006/viro.2002.1384
-
Van Sant C, Kawaguchi Y, Roizman B. 1999. A single amino acid substitution in the cyclin D binding domain of the infected cell protein no. 0 abrogates the neuroinvasiveness of herpes simplex virus without affecting its ability to replicate. Proc Natl Acad Sci USA, 96 (14): 8184-8489.
doi: 10.1073/pnas.96.14.8184
-
Ward P L, Taddeo B, Markovitz N S, et al. 2000. Identification of a novel expressed open reading frame situated between genes U(L)20 and U(L)21 of the herpes simplex virus 1 genome. Virology, 266 (2): 275-285.
doi: 10.1006/viro.1999.0081