Citation: Xiao-Ping Chen, Hai-Rong Xiong, Ni Zhu, Qing-Zhou Chen, Hui Wang, Chao-Jie Zhong, Mei-Rong Wang, Shuang Lu, Fan Luo, Wei Hou. Lack of association between integrin αvβ3 gene polymorphisms and hemorrhagic fever with renal syndrome in Han Chinese from Hubei, China .VIROLOGICA SINICA, 2017, 32(1) : 73-79.  http://dx.doi.org/10.1007/s12250-016-3888-0

Lack of association between integrin αvβ3 gene polymorphisms and hemorrhagic fever with renal syndrome in Han Chinese from Hubei, China

  • Corresponding author: Wei Hou, houwei@whu.edu.cn, ORCID: 0000-0003-1439-455X
  • Received Date: 09 October 2016
    Accepted Date: 04 January 2017
    Published Date: 18 October 2016
    Available online: 01 February 2017
  • Hantaviruses belong to the family Bunyaviridae and cause hemorrhagic fever with renal syndrome (HFRS) in humans. β3 integrins, including αVβ3 and αIIbβ3 integrins, act as receptors on endothelial cells and play key roles in cellular entry during the pathogenesis of hantaviruses. Previous study demonstrated that the polymorphisms of integrin αIIbβ3 are associated with susceptibility to hantavirus infection and the disease severity of HFRS in Shaanxi Province of China, rather than in Finland. However, the polymorphisms of integrin αvβ3 in patients with HFRS was incompletely understood. Here, we aimed to investigate the associations between polymorphisms in human integrin αvβ3 and HFRS in Han Chinese individuals. Ninety patients with HFRS and 101 healthy controls were enrolled in this study. Analysis of five single nucleotide polymorphism (SNP) sites (rs3768777 and rs3738919 on ITGAV; rs13306487, rs5921, and rs5918 on ITGB3) was performed by TaqMan SNP genotyping assays and bi-directional PCR allele-specific amplification method. No significant differences were observed between the HFRS group and controls regarding the genotype and allele frequency distributions of any of the five SNP sites, and no associations were found between ITGAV polymorphisms/genotypes and disease severity. In conclusion, our results implied that these five SNPs in the integrin αvβ3 gene were not associated with HFRS susceptibility or severity in Han Chinese individuals in Hubei Province.

  • 加载中
    1. Ahmad NN, Cu-Unjieng AB, Donoso LA. 1995. Modification of standard proteinase K/phenol method for DNA isolation to improve yield and purity from frozen blood. J Med Genet, 32: 129-130.
        doi: 10.1136/jmg.32.2.129

    2. Gavrilovskaya IN, Brown EJ, Ginsberg MH, Mackow ER. 1999. Cellular entry of hantaviruses which cause hemorrhagic fever with renal syndrome is mediated by beta3 integrins. J Virol, 73: 3951-3959.

    3. Gavrilovskaya IN, Peresleni T, Geimonen E, Mackow ER. 2002. Pathogenic hantaviruses selectively inhibit beta3 integrin directed endothelial cell migration. Arch Virol, 147: 1913-1931.
        doi: 10.1007/s00705-002-0852-0

    4. Hynes RO. 2002. Integrins: bidirectional, allosteric signaling machines. Cell, 110: 673-687.
        doi: 10.1016/S0092-8674(02)00971-6

    5. Jacq L, Garnier S, Dieude P, Michou L, Pierlot C, Migliorini P, Balsa A, Westhovens R, Barrera P, Alves H, Vaz C, Fernandes M, Pascual-Salcedo D, Bombardieri S, Dequeker J, Radstake TR, Van Riel P, van de Putte L, Lopes-Vaz A, Glikmans E, Barbet S, Lasbleiz S, Lemaire I, Quillet P, Hilliquin P, Teixeira VH, Petit-Teixeira E, Mbarek H, Prum B, Bardin T, Cornelis F. 2007. The ITGAV rs3738919-C allele is associated with rheumatoid arthritis in the European Caucasian population: a familybased study. Arthritis Res Ther, 9: R63.
        doi: 10.1186/ar2221

    6. Jonsson CB, Figueiredo LT, Vapalahti O. 2010. A global perspective on hantavirus ecology, epidemiology, and disease. ClinMicrobiol Rev, 23: 412-441.

    7. Kucharska-Newton AM, Monda KL, Campbell S, Bradshaw PT, Wagenknecht LE, Boerwinkle E, Wasserman BA, Heiss G. 2011. Association of the platelet GPIIb/IIIa polymorphism with atherosclerotic plaque morphology: the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis, 216: 151-156.
        doi: 10.1016/j.atherosclerosis.2011.01.038

    8. Kwok PY, Chen X. 2003. Detection of single nucleotide polymorphisms. Curr Issues MolBiol, 5: 43-60.

    9. Laine O, Joutsi-Korhonen L, Makela S, Mikkelsson J, Pessi T, Tuomisto S, Huhtala H, Libraty D, Vaheri A, Karhunen P, Mustonen J. 2012. Polymorphisms of PAI-1 and platelet GP Ia may associate with impairment of renal function and thrombocytopenia in Puumala hantavirus infection. Thromb Res, 129: 611-615.
        doi: 10.1016/j.thromres.2011.11.007

    10. Liu Q, Thorland EC, Heit JA, Sommer SS. 1997. Overlapping PCR for bidirectional PCR amplification of specific alleles: a rapid one-tube method for simultaneously differentiating homozygotes and heterozygotes. Genome Res, 7: 389-398.

    11. Liu Z, Gao M, Han Q, Fang J, Zhao Q, Zhang N. 2008a. Intensity of platelet beta (3) integrin in patients with hemorrhagic fever with renal syndrome and its correlation with disease severity. Viral Immunol, 21: 255-262.
        doi: 10.1089/vim.2007.0098

    12. Liu Z, Gao M, Han Q, Lou S, Fang J. 2009. Platelet glycoprotein IIb/IIIa (HPA-1 and HPA-3) polymorphisms in patients with hemorrhagic fever with renal syndrome. Hum Immunol, 70: 452-456.
        doi: 10.1016/j.humimm.2009.03.009

    13. Liu Z, Zhao Q, Han Q, Gao M, Zhang N. 2008b. Serum thrombospondin-1 is altered in patients with hemorrhagic fever with renal syndrome. J Med Virol, 80: 1799-1803.
        doi: 10.1002/jmv.v80:10

    14. Mackow ER, Gavrilovskaya IN. 2001. Cellular receptors and hantavirus pathogenesis. Curr Top MicrobiolImmunol, 256: 91-115.

    15. Syvanen AC. 2001. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet, 2: 930-942.
        doi: 10.1038/35103535

    16. Thompson EE, Pan L, Ostrovnaya I, Weiss LA, Gern JE, Lemanske RF, Jr., Nicolae DL, Ober C. 2007. Integrin beta 3 genotype influences asthma and allergy phenotypes in the first 6 years of life. J Allergy ClinImmunol, 119: 1423-1429.
        doi: 10.1016/j.jaci.2007.03.029

    17. Xiong HR, Li Q, Chen W, Liu DY, Ling JX, Liu J, Liu YJ, Zhang Y, Yang ZQ. 2011. Specific humoral reaction of hemorrhagic fever with renal syndrome (HFRS) patients in China to recombinant nucleocapsid proteins from European hantaviruses. Eur J ClinMicrobiol Infect Dis, 30: 645-651.
        doi: 10.1007/s10096-010-1134-5

    18. Zhang Y, Han Y, Dong L, Yu H, Cheng L, Zhao X, Ding M. 2013. Genetic variation of ITGB3 is associated with asthma in Chinese Han children. PLoS One, 8: e56914.
        doi: 10.1371/journal.pone.0056914

    19. Zhang YZ, Zou Y, Fu ZF, Plyusnin A. 2010. Hantavirus infections in humans and animals, China. Emerg Infect Dis, 16: 1195-1203.
        doi: 10.3201/eid1608.090470

  • 加载中

Figures(1) / Tables(5)

Article Metrics

Article views(6981) PDF downloads(18) Cited by()

Related
Proportional views

    Lack of association between integrin αvβ3 gene polymorphisms and hemorrhagic fever with renal syndrome in Han Chinese from Hubei, China

      Corresponding author: Wei Hou, houwei@whu.edu.cn
    • State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China

    Abstract: Hantaviruses belong to the family Bunyaviridae and cause hemorrhagic fever with renal syndrome (HFRS) in humans. β3 integrins, including αVβ3 and αIIbβ3 integrins, act as receptors on endothelial cells and play key roles in cellular entry during the pathogenesis of hantaviruses. Previous study demonstrated that the polymorphisms of integrin αIIbβ3 are associated with susceptibility to hantavirus infection and the disease severity of HFRS in Shaanxi Province of China, rather than in Finland. However, the polymorphisms of integrin αvβ3 in patients with HFRS was incompletely understood. Here, we aimed to investigate the associations between polymorphisms in human integrin αvβ3 and HFRS in Han Chinese individuals. Ninety patients with HFRS and 101 healthy controls were enrolled in this study. Analysis of five single nucleotide polymorphism (SNP) sites (rs3768777 and rs3738919 on ITGAV; rs13306487, rs5921, and rs5918 on ITGB3) was performed by TaqMan SNP genotyping assays and bi-directional PCR allele-specific amplification method. No significant differences were observed between the HFRS group and controls regarding the genotype and allele frequency distributions of any of the five SNP sites, and no associations were found between ITGAV polymorphisms/genotypes and disease severity. In conclusion, our results implied that these five SNPs in the integrin αvβ3 gene were not associated with HFRS susceptibility or severity in Han Chinese individuals in Hubei Province.