HTML
-
Biomaterials play a pivotal part in tissue engineering and regenerative medicine, and are regarded as a platform that mimics key features of the natural extracellular matrix (ECM) (Lutolf and Hubbell, 2005). In tissue engineering applications, especially in 3D cell cultures, the mechanical and biochemical properties of scaffolds impact on cellular morphogenesis and function (Guilak et al., 2009). Natural and synthetic polymers have been extensively explored in 3D cell cultures; such scaffold materials are designed to support the attachment, maintenance, proliferation and differentiation of cells (Keane and Badylak, 2014). Tissue engineering may provide the possibility of flexibly altering the physical and biochemical characteristics of scaffolds and matrices (Hutmacher, 2010).
-
Currently, the most common 3D scaffolds are naturally derived polymer materials that can be directly extracted from plant, animal or human tissue (Ravi et al., 2015; Worthington et al., 2015), such as collagen, hydrogel, Matrigel, laminin, gelatin, hyaluronate, chitosan, silk, fibrin, etc. (Lee et al., 2008), because they have similar biological properties to ECM and in vivo environments. Natural polymers show good biocompatibility, low toxicity and chronic inflammatory response (Haycock, 2010). In addition, they can also be coupled with adhesion and growth/differentiation factors (Ruedinger et al., 2015). However, natural ECM scaffolds also have their own drawbacks, including the limited source of natural tissues, the uncontrollable process, the unpredictable complexity of the natural organs and the immune responses to stimuli (Zhang et al., 2016).
-
In recent years, synthetic polymers have been designed and extensively applied in tissue engineering to substitute for the natural ECM microstructures and properties (Lutolf and Hubbell, 2005), because of their flexible biophysical and biochemical characteristics, high versatility, reproducibility and good workability (Gunatillake and Adhikari, 2003; Xu et al., 2014). Synthetic materials include polystyrene, polycaprolactone, poly(lactic acid), polyethylene glycol (PEG), poly(acrylic acid), polyurethanes, poly(ortho ester) and polyanhydrides, etc. (Lee et al., 2008; Haycock, 2010). Synthetic polymers may have some greater strengths in 3D cell culture compared with natural polymers: they promote cell adhesion, spreading and proliferation (Choi et al., 2015). However, synthetic materials are generally less biocompatible than natural ones and are not bioactive (Haycock, 2010). Recently, considerable progress has been made with the synthetic polymers used in 3D cell culture, and many methods for altering biomaterial activity are currently being developed (Keane and Badylak, 2014).
-
3D cell culture is an in vitro culture model where different cell types are placed within a carrier composed of different materials with 3D structures, leading to cells that can grow and migrate in 3D space, further promoting cell proliferation and differentiation, to mimic in vivo cell microenvironments (Antoni et al., 2015).With the dynamic advancements in the instrumentation technology and material sciences (Ravi et al., 2015), increasing 3D cell culture models are developed for applying in bio logical science. Cells grown in a 3D environment more closely represent normal cellular characteristics and biological function that the traditional 2D monolayer culture cannot provide. For example, cells cultured in a 3D matrix can adequately reproduce the function of 3D tissues and mimic cell-cell and cell-matrix interactions that affect proliferation, differentiation, morphology and a range of cellular functions in vivo, which are lost in conventional 2D conditions (Mazzoleni et al., 2009). The classic polarized patterns of signaling that guide migration in 2D models are not essential for efficient migration in 3D models (Petrie et al., 2012). Almost all cells use lamellipodia to migrate on 2D substrates, however, multiple modes of migration are observed in three dimensions, including lamellipodial, lobopodian, amoeboid migration (Madsen and Sahai, 2010; Petrie et al., 2012) and collective migration (Friedl and Alexander, 2011). Baker and Chen (2012) further discuss examples that 3D context can provide insights in adhesion, migration and polarization which cannot be provided by the traditional 2D systems. Table 1 shows the differences between 2D and 3D cell cultures.
Cell characteristics/ function 2D 3D References Cell shape Single layer Multiple layers Edmondson et al., 2014 Morphology Sheet-like flat and stretched cells in monolayer From aggregate/spheroid structures Edmondson et al., 2014 Polarity Partial polarization More accurate depiction of cell polarization Antoni et al., 2015 Stiffness High stiffness Low stiffness Baker and Chen, 2012 Migration Only one mechanism Diverse cell migration strategies Pampaloni et al., 2007 Petrie and Yamada, 2012 Adhesions Represent exaggerated stages of dynamic in vivo Generate adhesions comparable with 3D adhesion in vivo Cukierman et al., 2002 Proliferation Tumor cells grown in monolayer faster than in 3D spheroids Similar to the situation in vivo Antoni et al., 2015 Gene expression/ protein expression Often display differential gene/protein levels compared with in vivo models Gene and protein expression in vivo to be present in 3D models Ravi et al., 2015 Ghosh et al., 2005 Drug sensitivity Cells are more sensitive to drugs in contrast to 3D cells Cells are more resistant to anticancer drugs compared with 2D cells Loessner et al., 2010 Karlsson et al., 2012 Cell-cell interaction Limited In vivo-like Li and Cui., 2014 Table 1. The differences of biological function and cellular characteristics in 2D and 3D systems
-
3D cell cultures provide a platform for cell proliferation and differentiation. In addition, some emerging 3D culture models can allow nutrients and metabolites to be transported in and out of the 3D cells (Li and Cui, 2014). Although current 3D systems provide unique mechanistic insights into cell-microenvironment interaction, most 3D models do not replicate all complex physiological features of real-tissue in vivo. They often lack the normal vasculature, normal transport of small molecules, host immune responses, internal tissue tensions, tissue heterogeneity and fluid flows observed in vivo. In addition, those models cannot precisely replicate biochemical composition, gradients of soluble regulatory factors and other microenvironment factors in vivo (Yamada and Cukierman, 2007; Grinnell and Petroll, 2010; Baker and Chen, 2012; Friedl et al., 2012). Moreover, more complex architectures are found in tissues in vivo, such as orthogonally arranged collagen sheets and collagen fibril bundles. However, the most current methods to prepare 3D fibrillar matrices result in matrices in which fibrils lack any particular organization or become aligned uniaxially (Grinnell and Petroll, 2010). A brief summary of the strengths and limitations of 3D culture models is presented in Table 2.
Strengths References Cells cultured in 3D system can represent a more physiological microenvironment. Vinci et al., 2012 As compared with 2D cultures, 3D cell cultures more accurately simulate normal Antoni et al., 2015 cell morphology, proliferation, migration, cell-cell and cell-ECM interactions. Edmondson et al., 2014 3D cell culture is flexible, cost effective and controllable, as well as a high-throughput platform. Nickerson et al., 2007 Several 3D models can monitor and control physiological conditions: temperature, Murakami et al., 2008; Li and Cui., 2014; pH, oxygen concentration, metabolites and growth factors. Worthington et al., 2015 Limitations References In vivo complex and physiological microenvironment not to be replicated. Friedl et al., 2012; van Duinen et al., 2015 Poor reproducibility for some biomimetic scaffolds. Antoni et al., 2015 Some available 3D models to be more time and expensive. Vinci et al., 2012 Quality of imaging interfering with 3D scaffold size, material transparency and microscope depth. Antoni et al., 2015 Table 2. Strengths and limitations of 3D cell culture models
-
Currently available and typical 3D models are spontaneous cell aggregation, liquid overlay, gyratory rotation and spinner flask spheroid cultures, scaffold-based culture systems, microcarrier beads and the rotary cell culture system (Kim, 2005; Page et al., 2013), as well as 3D perfusion cell culture, microfluidic 3D cell culture and 3D cell culture by magnetic levitation (Souza et al., 2010; Li and Cui, 2014; van Duinen et al., 2015). Here, we only focus on those 3D models that have been utilized to study human viruses or will be applicable for this in the future.
-
3D MCS culture has become a valuable tool for mimicking the biological features and functional characteristics of native tissue. MCSs are cells that aggregate and undergo the process of self-assembly on an attachment surface or scaffold. During self-assembly, mono-dispersed cells form 3D microtissues (Achilli et al., 2012; Lee et al., 2015). The spheroid format is particularly useful in cancer research as it enables quick discovery of morphological changes in transformed cells (Antoni et al., 2015). The most commonly used model is the multicellular tumor spheroids model, which has phenotypic characteristics close to those of human tumor tissues. Consequently, it has been applied extensively in reproducing the key elements of malignant tumor behavior (Hamilton, 1998).
Traditional and newer techniques have been investigated for spheroid production. First, the spinner flask method, which prevents cell attachment to the vessel surface and promotes cell-cell contacts via constant stirring. This method is relatively simple and produces massive spheroids, suitable for high-throughput testing, but has a high shear force and variability in cell size/number (Lin and Chang, 2008; Breslin and O'driscoll, 2013). Second, the hanging drop method depends on gravity forces to form spheroids on inverted substrates (Kelm et al., 2003). This method is inexpensive and suitable for highthroughput testing, and the spheroid size can be controlled; however, it is labor intensive and mass production is limited (Lin and Chang, 2008). Third, liquid overlay culture, which prevents the attachment of cells to tissue culture plates and promotes spheroid formation (Achilli et al., 2012). Although this method is easy to set up, rapid and makes screening easy, the size and shape of the spheroids are heterogeneous. Fourth, a rotating-wall vessel (RWV) creates a microgravity that supports cells in suspension and promotes cell aggregation into spheroids. This method allows good control of the microenvironment over time (Achilli et al., 2012). In addition, pellet culture 3D scaffolds can also form MCSs, especially with micro-fluidics and the magnetic cell levitation method, which were developed in recent years to create new opportunities to form spheroids (Kim et al., 2013).
MCS models have given rise to many advances in basic cell science, including understanding tumor invasion and migration, and creating models for toxicology testing and drug discovery (Achilli et al., 2012; Vinci et al., 2015). The development of new technologies for analyzing spheroids has led to a rapid increase in their adoption and expansion of their applications. New technologies for analyzing spheroids have led to a rapid increase in their adoption and expansion of their applications.
Apart from those applications mentioned above, MCS models have also been investigated as basic units for human viruses. Although the study of viruses in spheroid models is still limited so far, investigating virus-cancer interactions, the mechanism of viruses causing cancer and evaluating antiviral agents relating to tumors by those models may lead to the future direction in the field of cancer.
-
The RWV is an optimized suspension culture vessel for forming 3D tissue-like assemblies (TLAs). The RWV is based on a rotating cylinder that is completely full with culture medium, the sedimentation of cells in the vessel is counterbalanced by the rotating fluid, creating a constant, gentle fall of cells through the medium under conditions of physiologically relevant fluid shear (Hammond and Hammond, 2001; Nickerson et al., 2004; Barrila et al., 2010). To generate 3D cellular aggregates, cells are first cultured in 2D monolayers. When the cells have grown to an appropriate density, they are removed from the petri dishes or flasks and re-suspended in culture medium, then they are placed within porous ECMcoated microcarrier beads for attachment (Barrila et al., 2010). Lastly, the cellular aggregates are harvested and analyzed.
Traditional cell culture and parts of some 3D models may generate high shear forces, which may injure the cells and block proper tissue-specific differentiation (Unsworth and Lelkes, 1998), and inadequate nutrient and oxygenation transfer give rise to cell death, posing critical obstacles to establishing functional 3D culture systems. To overcome these problems, the NASA (National Aeronautics and Space Administration) Johnson Space Center developed the RWV (Goodwin et al., 1992), which provides a low fluid-shear environment and minimal turbulence that promotes cell growth and randomized gravitational vectors (Goodwin et al., 1993). The fluid dynamics of RWV bioreactors allow oxygen and nutrients to diffuse across into the cell aggregates and prevent tissue constructs from necrotic cores (Goodwin et al., 2015).
Studies have shown that the RWV can produce 3D models and can recreate many of the fundamental facets of the real tissue in vivo, such as 3D cellular polarity, cellular differentiation and proliferation, cell-cell interaction, multicellular complexity and functionality (Rhee et al., 2001; Cerwinka et al., 2012; Samuelson and Gerber, 2013). RWV-derived 3D models have been applied to the investigation of infectious agents (viruses, bacteria and parasites) (Barrila et al., 2010). Those models can reflect the natural infection process. The inherent flexibility of this system is an ideal platform for exploring fundamental questions in virology. A multitude of research has shown that RWV-derived models utilizing human cells are a valuable tool for investigating viral growth, replication, viral infection, viral entry, the viability of virions and virus-host interaction (Margolis et al., 1997; Long et al., 1998; Nickerson et al., 2007; Straub et al., 2007; Barrila et al., 2010; Berto et al., 2013; Goodwin et al., 2015). The RWV provides a useful model system for studying human viruses and has the potential for use in developing and screening antiviral drugs, as well as evaluating vaccines.
The other bioreactor used for studying human viruses is the RFB, consisting of a vessel, column and PC monitoring system. It was originally designed for creating artificial liver tissues allowing human liver cells to maintain their morphological characteristics and physiological functions for a relatively long period of time (Kawada et al., 1998; Aizaki et al., 2003). Culture conditions can automatically be controlled. Temperature, pH and oxygen concentration in the conditioning vessel are continuously monitored by PC and conditioned by mass flow controller (Murakami et al., 2008). The RFB-derived 3D models have mainly been used for hepatitis C virus (HCV). However, to our knowledge, no research associated with the RFB being used for human viruses has been reported in PubMed since 2008.
-
The organotypic epithelial raft culture is an in vitro 3D culture system, where epithelial cells are placed on top of a dermal equivalent and then cultured at the air-liquid interface to full differentiation (Meyers et al., 1992; Andrei, 2006; Fang et al., 2006). Raft cultures are prepared using cells or tissues derived from dispersed primary keratinocytes, explanted epithelial tissue or established cell lines (Andrei et al., 2010). Organotypic raft culture was originally designed to accurately mimic the in vivo morphological and physiological characteristic of the epidermis (Asselineau and Prunieras, 1984; Meyers et al., 1992). This system, forming a stratified and differentiated epithelium, has provided researchers a useful means to investigate epitheliotropic viruses (Chow, 2015). Over the past few years, human papillomavirus (HPV)-host interactions have been demonstrated with these raft cultures similar to those observed in vivo. This system has been a paramount milestone in the study of HPV so far.
-
3D scaffold materials are designed to support the attachment, proliferation and differentiation of selected cell populations grown in 3D culture models. Scaffold-based 3D cultures are playing an increasing role in tissue engineering. In recent years, these models have been applied to virology.
Several matrices have been used to investigate human viruses. Among them, the use of Matrigel as a 3D scaffold has shown promise for the study of several viruses. Matrigel, a gelatinous protein mixture, resembles the complex extracellular environment observed for tissues in vitro and produces a thick matrix for 3D cell culture (Kleinman and Martin, 2005). HCV has been investigated by this 3D model. In addition, the use of Matrigelbased systems for recombinant adenoviruses and Epstein-Barr virus has begun to capture researchers' attention (Fotheringham and Raab-traub, 2013; Wang et al., 2014). Alginate, including sodium-alginate salt and calcium-alginate, is also used for studying HCV. Mebiol gel, a thermoreversible gelation polymer (TGP), is a synthetic compound that consists of thermo-responsive and hydrophilic polymer blocks. As a 3D scaffold it was proven to be susceptible to HCV replication (Rajalakshmy et al., 2015).
Although the scaffold/matrix-based 3D culture models used for human viruses appear to be very limited so far, these systems may be applied in virology to define new anti-virus strategies, and may also provide a potential platform for the specific design of effective individual therapy according to patient-specific strains (Aly et al., 2009).
-
The multicellular complexity of tissues cannot be captured by typical 3D cell culture models, these models lack vasculature, do not provide precise control over gradients and undergo medium exchange at discrete time points instead of in a continuous manner (van Duinen et al., 2015). In recent years, several novel 3D culture models have been developed for further studying human tissue pathophysiology and physiology in vitro. Microfluidic 3D cell culture allows spatial control over fluids in micrometer-sized channels. This model has become a valuable tool to further increase the physiological relevance of 3D cell culture by enabling spatially controlled co-cultures, perfusion flow and spatial control over signaling gradients. van Duinen et al. (2015) have reviewed the most important progress in microfluidic 3D cell culture since 2012. Using hydrogels in microfluidic systems have been a recent trend, this model offers cells a more physiologically relevant 3D matrix (Huang et al., 2011; Chung et al., 2012). The microfluidics 3D system will play an important role in the development of personalized medicine, especially in the field of cancer. In addition, 3D perfusion cell culture, an emerging technology, may provide a potential research avenue for commercial applications in drug discovery, regenerative medicine and tissue engineering. This model, mimicking the blood circulation in the human body, can control physiological chemostatic conditions, and create gradients of oxygen, growth factors and other biochemical signals. The 3D perfused culture model also can maintain the stability of the local microenvironment of the residing cells by continuously providing a nutrient supply and waste removal (Li and Cui, 2014). Souza et al. (2010) reported a novel 3D tissue culture based on magnetic cells levitation. In this method, cells bind with a magnetic iron oxide nanoparticle assembly comprising gold nanoparticles and cell-adhesive peptide sequences. By spatially controlling the magnetic field, cells are concentrated at the airliquid interface, where they aggregate to form larger 3D cultures (Haisler et al., 2013). The magnetic levitation method (MlM) and other associated techniques (cell culture, imaging and IHc) adapted for the MlM are described by Haisler et al.(2013).
Although there are no reports associated with studying human viruses using those models, these approaches may become valuable tools in the field of human viruses in the future. The advantages and disadvantages of different 3D culture models used for human viral growth, replication, proliferation, infection and antiviral drugs are listed in Table 3.
Methods Advantages Disadvantages References MCS cultures High-throughput assay
Best suited for cancer
research
Reproduces tissue-like
organization
Co-culture possibleHigh shear stress
Size of spheroid limiting
Limited flexibilityAchilli et al., 2012
Asthana and Kisaalita., 20123D cell culture
using RWVLow fluid-shear environment
Inherent flexibility
Easy manipulation of culture
conditions
Randomized gravitational
vectorsPotential length of time
ExpensiveBarrila et al., 2010
Hjelm et al., 2010
Unsworth et al., 1998
Hammond and Hammond, 2001Organotypic epithelial
raft culturesFlexibility
Suit studying epitheliotropic
or fastidious virusesExpensive
Time consuming and
laboriousOzbun and Patterson, 2014
Chow, 2015
Andrei et al., 2010Scaffold/matrix-
based cultureQuiet incorporates growth
factors
Good extracellular support
Easy to set up
Available for co-culturesExpensive
Limited in removing cellsKim, 2005
Breslin and O'Driscoll, 2013Microfluidic 3D
cell cultureThe ability to co-culture cells
in a spatially controlled
manner
Generation of and control
over (signaling) gradients
The integration of
perfusion/flowExpensive special equipment
Requirement for high sensitive
analytical methods
Difficulty to maintain long term
flow stability The limited size and low number of cellsvan Duinen et al., 2015 Breslin and O'Driscoll, 2013 Li and Cui, 2014 3D perfusion
cell cultureOvercomes diffusional
limitations
Controllable shear stimulates
cell functions
Can control physiological
chemostatic conditions
Generates gradients of
oxygen, growth factorsHigh cost Li and Cui, 2014 3D cell culture by
magnetic levitationDoes not induce an
inflammatory response by
the cultured cells
Nontoxic
Suitable for co-culture
Simple, flexible and effectiveExpensive Souza et al., 2010
Tseng et al., 2013Table 3. The advantages and disadvantages of different 3D culture models used for human virology
To develop routine and advanced 3D cell culture devices, several factors must be considered, such as the cost of equipment, running cost, throughput and the simple operation. Commercial development of in vitro 3D models and applications has been summarized by Li and Cui (2014), including the suppliers, the core technology and 3D products. The devices, scaffolds and technical demands for different 3D cell cultures are listed in Table 4. 3D models are modular, tractable biomedical systems, which will yield great advances in our understanding of biological science. Although some shortcomings have been found in the current 3D systems, 3D cell culture models hold enormous potential for the basic cell science, tissue engineering and infectious pathogens. 3D cell culture is an evolving field and requires further research for its optimization by combining a number of key areas including materials science, cell biology and bioreactor design.
3D models Devices, scaffolds, technical demands References MCS cultures Microfluidics
Hanging drop
Pellet culture
Spinner flask culture
Liquid overlay culture
Rotating-wall-vessel bioreactorsLin and Chang, 2008
Kelm et al., 2003
Achilli et al., 20123D cell culture using
rwvRotating-wall-vessel bioreactors Antoni et al., 2015 Organotypic epithelial
raft culturesThe dermal equivalent is composed of natural dermal elements
(collagen matrix with fibroblasts) or a synthetic dermal matrix
maintained on a rigid supportFang et al., 2006
Andrei et al., 2010Scaffold/matrix-
based cultureNatural polymers: such as hydrogel, collagen, Matrigel, laminin,
gelatin, hyaluronate, chitosan
Synthetic polymers: such as polycaprolactone, polyethylene glycol,
polyurethanes and polyanhydridesLee et al., 2008
Haycock, 2010Microfluidic 3D cell
cultureCell patterning inside a hydrogel, exploiting the microfluidic properties
and differences in viscosity and pressure
96 microfluidic culture chambers integrated underneath a microtiter
plate Microfluidic hanging drop network
Dynamically perfused chip-based bioreactor platformBischel et al., 2013
Frey et al., 2014
Atac et al., 2013
Trietsch et al., 2013
van Duinen et al., 20153D perfusion
cell cultureStirred-suspension culture reactors
Rotating-wall-vessel bioreactors
Hollow fiber bioreactors
Direct perfusion bioreactorsJasmund and Bader, 2002
Martin and Vermette, 2005
Morin et al., 2003
Zhao and Ma, 2005
Li and Cui, 20143D cell culture by
magnetic levitationConsisting of gold nanoparticles, magnetic iron oxide nanoparticles
and filamentous bacteriophageSouza et al., 2010
Haisler et al., 2013Table 4. Devices, scaffolds and technical demands for different 3D cell culture
Matrices/scaffolds for 3D cell culture
Natural polymers
Synthetic polymers
3D versus 2D cell culture
Strengths and weaknesses of 3D models
TYPES OF 3D CULTURE MODELS APPLICABLE TO HUMAN VIRUSES
Multicellular spheroid (MCS) models
3D cell culture using RWV or radial-flow bioreactor (RFB)
Organotypic epithelial raft cultures
Scaffold/matrix-based cultures
Novel 3D cell culture models
-
Human papillomavirus (HPV) is small, non-enveloped viruses with a double-stranded DNA genome (Doorbar et al., 2012). More than 180 types of HPV have been identified, which are classified into low-risk and high-risk HPV types (Bernard et al., 2010). The viral genome includes six early proteins E1, E2, E4, E5, E6 and E7, and the late structural proteins L1 and L2 (Malik et al., 2014). High-risk types cause cervical cancers and other anogenital carcinomas (vulvar, vaginal and anal). Types 16 and 18, the two most carcinogenic HPV types, are thought to contribute to 70% of human cervical cancer (Schiffman et al., 2007).
Organotypic epithelial raft cultures represented a breakthrough in the study of papillomaviruses due to the strict link of HPV replication with epithelial cell differentiation (Andrei et al., 2010). So far, more than nine aspects of HPVs have been explored in these systems. HPV cannot be propagated in 2D cell monolayer cultures, so organotypic epithelial raft cultures that generate a stratified and differentiated epithelium have been applied in studying the HPV life cycle (Chow, 2015). The organotypic raft culture system has allowed the study of the entire differentiation-dependent life cycle of HPVs, including virion morphogenesis (Mclaughlin-Drubin et al., 2003; Mclaughlin-Drubin and Meyers, 2005). Fang et al. (2006) demonstrated episomal maintenance of HPV-11 DNA in N-Tert cells. HPV-11 episomal DNA-contain ing cell populations grown in raft culture showed induction of a productive viral life cycle. This system has served as a faithful in vitro model for investigating propagation, infection and neutralization of HPVs, as well as producing infectious HPV virions (Ozbun, 2002; Mclaughlin-Drubin et al., 2004; Chow et al., 2009; Wang et al., 2009). Examinations of virus-host interactions have also been reported (Anacker and Moody, 2012). Several researchers have further used the organotypic epithelial raft cultures to study the interaction of HPV with other epitheliotropic viruses, such as herpes simplex virus (HSV) and HPVs, adeno-associated virus and HPV interaction (Meyers et al., 2003; Hermonat et al., 2005). Importantly, Meyers et al. (2002) demonstrated that the nonstructural genes of HPV18 functionally interact with the structural genes of HPV16, allowing the complete HPV life cycle to occur, which is the first report of the propagation of chimeric HPV by normal life cycle pathways. Screening and evaluating antiviral compounds can also be carried out with raft cultures (Satsuka et al., 2010). Recently, research on the relationship between tumor progression and HPV is increasing, which will hopefully lead to the development of effective treatments for HPV-associated cancer.
A detailed review concerning evaluation of the efficacy of the therapeutic interventions for HPV using epithelial raft cultures has been published by Andrei et al. (2010). So far, these studies appear to be rather limited. In recent years, an increasing number of studies have addressed more specifically the role of HPV gene products and the difference in protein function between different HPV types, as well as the mechanisms of HPV carcinogenesis, especially the relationship between HPV oncoproteins (E2, E4, E5) and cervical tumors (Doorbar, 2016). The effects of HPV16 E5 deletion mutants on epithelial morphology have been reported by Barbaresi et al. (2010). Mole et al. (2009) using the organotypic raft culture with epithelial cells, demonstrated that SF2/ASF (splicing factor 2/alternative splicing factor) is up-regulated in response to differentiation in HPV-infected cervical epithelial raft tissue. A specific subset of SR proteins (Ser-Arg rich proteins) regulated by HPV16 E2, including SF2/ASF, SRp20 and SC35, were also overexpressed during cervical tumor progression. Furthermore, organotypic raft cultures using verruciformis-derived keratinocytes could be used to reconstruct the β-HPV life cycle and show the relationship between β-HPV E4 expression patterns and disease severity. This finding is indicative that E4 may be a possible marker of viral expression during β-HPV-associated skin cancer progression (Borgogna et al., 2012). A longitudinal cell culture using organotypic raft cultures has been used to investigate the immortalizing and transforming abilities of naturally occurring E6 variants in primary human foreskin keratinocytes (PHFKs). The observations provided insight into the mechanisms behind how PHFKs are immortalized and transformed into malignant tumors by the viral oncoproteins of HPV16 (Richard et al., 2010). In addition, a breakthrough in HPV chimeric genomes producing infectious virus in organotypic raft cultures was achieved. Researchers constructed HPV18 chimeric genomes in which the HPV18 capsid genes were replaced with those of evolutionarily diverse PV types, including HPV45, HPV39, HPV33, HPV31, HPV11, HPV6b, HPV1a, CRPV and BPV1. Each of the chimeric genomes generated infectious viral particles in organotypic raft cultures (Bowser et al., 2011).
-
Human immunodeficiency virus (HIV), originally isolated from a patient with acquired immune deficiency syndrome (AIDS) in France in 1983 (Barre-Sinoussi et al., 1983), is a major contributor to the global burden of disease. Although dramatic progress has been made in the development of novel antiviral drugs (De Clercq, 2007), an effective vaccine remains elusive despite two decades of effort (Maartens et al., 2014).
The use of antiretroviral drugs has markedly reduced the mortality rate amongst AIDS patients. However, the effect of these drugs on oral epithelium growth and differentiation is presently unknown. A new 3D cell culture system, organotypic raft cultures of gingival keratinocytes, has been established. Research demonstrated that HIV protease inhibitor amprenavir severely inhibited the growth of gingival epithelium cultured in this model. When the drug was added at day 8, amprenavir treatments altered the proliferation and differentiation of gingival keratinocytes (Israr et al., 2010). There are several other studies that have reported similar results utilizing organotypic raft cultures of gingival keratinocytes to investigate the effect of anti-HIV drugs on gingival epithelium growth and differentiation. Those drugs included protease inhibitor lopinavir/ritonavir, and nucleoside reverse transcriptase inhibitors zidovudine, efavirenz and tenofovir (Israr et al., 2011; Mitchell et al., 2012; Mitchell et al., 2014). Furthermore, Balzarini et al. (2013) developed a multi-targeted drug, 6-phosphonylmethoxyethoxy-2, 4-diaminopyrimidine (PMEODAPym), and demonstrated that this drug efficiently suppressed both HIV-1 and HSV-2 in organotypic epithelial raft cultures of primary human keratinocytes. In addition, 3D cell cultures could be developed as a potential model for studying the neuropathogenesis of HIV infection and the development of drug candidates that could effectively treat the neurological complications of HIV infection (Nickerson et al., 2007). Investigating the effects of highly active antiretroviral therapy (HAART) and designing multi-targeted antiviral drugs that could effectively suppress both HIV and hepatitis B virus (HBV) (or HCV) may lead to the future direction of HIV in 3D culture systems.
-
Hepatitis C virus (HCV), first identified in 1989, poses an enormous threat to public health and affects more than 170 million people around the world (Choo et al., 1989; Poynard et al., 2003; Cox, 2015). Although the 2D cell culture model has been the standard tool for investigating HCV in cell culture, the HCV life cycle in vivo occurs in a much more complex environment compared to that in standard 2D cultures. 3D cell culture models can more closely mimic the polarized and differentiated state of hepatocytes in vivo (Liu et al., 2014). So far, HCV-associated research has been reported in three independent 3D cell cultures systems: 3D/RFB, 3D RWV bioreactors and the scaffold/ matrix-based 3D cultures.
Differentiated human hepatoma FLC4 cells transfected with full-length HCV RNA can produce and secrete infectious particles in the 3D RFB culture system (Aizaki et al., 2003). A similar result has been found in the RFB system following transfection of FLC4 cells with a dicistronic HCV genome derived from genotype 1b, as well as in the 3D/TGP system using Huh-7 cells (Murakami et al., 2006). Furthermore, research has demonstrated that a long-term culture of the 3D RFB system provides a potential platform for investigating HCV dynamics, as well as examining the therapeutic effects of interferon alpha in this 3D culture model (Murakami et al., 2008).
Although HCV culture infection models based on the HCV JFH-1 molecule clone and Huh-7 cells permit the production of virus, these recombinant HCV genomes only proliferate in sub-lines of Huh-7 cells, which do not allow infection or proliferation of blood-borne HCV. A novel in vitro culture system combining 3D/TGP and immortalized human hepatocytes (Hus-E/2 cells) demonstrated efficient support of the infection and replication of natural HCV (Aly et al., 2009). Moreover, another system based on a 3D hollow fiber culture system and the Hus-E/2 cell line was used for investigating the life cycle of blood-borne HCV, this 3D infection system allowed the reproduction of strain-dependent events reflecting virus-cell interactions and viral dynamics (Aly et al., 2009).
More recently, HCV infection, replication and life cycle have been studied frequently. RWV-cultured Huh-7 cells form complex, multilayered 3D aggregates, highly permitted for HCV infection, which provides a platform for studying HCV biology and the interaction between HCV infection and host cell function (Sainz et al., 2009b). Cho et al. (2009) described that Huh-7.5 cells cultured in a 3D PEG-based hydrogel system can be efficiently infected with HCV, which was the first report of de novo infection with the virus (both replication-defective pseudovirus particles and fully infectious HCV). In addition, Matrigel-embedded 3D culture of Huh-7 cells or Huh-7.5 cells was used as a hepatocyte-like polarized system and supported HCV infection by JFH-1 virus, as well as producing infective viral particles (Molina-jimenez et al., 2012; Liu et al., 2014). Researchers succeeded in reconstituting a hepatic-like structure formation from Huh-7 cells using a calcium-alginate encapsulation model, which provides an opportunity for viral studies, especially for application with HCV (Tran et al., 2013). Recently, Mebiolgel-derived 3D culture models were shown to support cell growth as 3D spheroids for up to 63 days, this system was susceptible to HCV infection and replication; it could be implemented as an alternate for primary hepatocytes in studies such as viral isolation from patient serum (Rajalakshmy et al., 2015).
So far, many facets of HCV have been extensively studied in 3D cell culture systems. However, knowledge of several dimensions of HCV are still limited: (ⅰ) HCV biology, (ⅱ) anti-HCV therapeutics, (ⅲ) HCV-HIV interaction and (ⅳ) HCV-cancer interaction. More efforts must be taken to further research HCV. 3D culture systems will provide insight into the biophysical properties and viral morphogenesis of HCV particles and assessing anti-HCV compounds. This system may have advantages in studying aspects of HCV biology, such as viral assembly and budding, and also provides a system for screening antiviral drugs that inhibit the release or transmission of infectious HCV (Liu et al., 2014).
-
Hepatitis E virus (HEV) was discovered during the Soviet occupation of Afghanistan in the 1980s. Anti-HEV therapy has been successfully used in chronic hepatitis E, the first vaccine available for clinical use is licensed in China (Mihalcin et al., 2015).
At present, the life cycle of HEV is still poorly understood, extensive study of the viral replication cycle has been hampered by the lack of efficient cell culture systems and animal models (Osterman et al., 2015). Research demonstrated that HEV can replicate efficiently in human hepatoblastoma PLC/PRF/5 cells cultured in a RWV for up to 5 months, HEV nucleic acid was detected by reverse transcription-PCR in the supernatant of the infected cells in the 3D cell culture system. In contrast, that was not observed in the 2D monolayer system. Complete virions were detection by electron microscopy. However, the study of HEV using 3D systems is limited so far, and 3D cultures will offer a potential platform for in vitro cultivation of HEV and investigation of the biology of HEV, as well as the viability of HEV in pig and other environmental samples (Berto et al., 2013).
-
Human herpes virus (HSV) is a significant pathogen and responsible for a variety of disorders (Nicoll et al., 2012). HSV-1 and HSV-2 are ubiquitous human pathogens. HSV-1 is normally associated with orofacial infections and encephalitis, whereas HSV-2 usually causes genital infections.
More culture models have been applied to epithelial cells for researching HSV. The organotypic raft culture system, which accurately mimics the in vivo physiology of the epidermis, is a most powerful tool for studying infectious agents that infect the epithelium. The first report about the application of 3D organotypic raft culture for the study of HSV appeared in 1996 (Syrjanen et al., 1996). Researchers demonstrated that the F strain of HSV-1 had the ability to produce lytic or nonproductive infection in HaCaT cells (immortalized skin keratinocytes) cultured in a 3D organotypic tissue culture. The cultures were infected with HSV-1 (5 PFU) 30 min after the lifting of the epithelial cells into the air-liquid interface and were collected 1 week after inoculation. These cultures were positive for HSV DNA using PCR. One year later, another research study focused on utilizing the organotypic tissue culture methodology for the study of the infection, replication and spread of HSV-1 in fully stratified and differentiated human epithelial tissue (Visalli et al., 1997). A similar HSV-1 culture system has also been described by Hukkanen et al. (1999). They reported HSV-1 could infect immortalized HaCaT keratinocytes cultured in an organotypic raft culture system, the virus yield was highest when the inoculation took place 72h after seeding. In addition, 3D epithelial raft culture represents a novel model for the study of antiviral agents active against HSV. Researchers have shown that specific compounds, such as foscarnet and cidofovir, can reduce the replication and spread of HSV in raft cultures of human keratinocytes (Andrei et al., 2005).
So far, significant advances are still limited in our knowl edge of HSV using 3D culture systems. Anti-HSV may be the future research direction, especially for evaluation of the efficacy of new anti-HSV antivirals before clinical trials.
-
Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella (chicken pox) and herpes zoster (shingles), establishes latency in multiple ganglionic neurons after primary infection and can reactivate to cause zoster (Arvin, 1996; Heininger and Seward, 2006). Unfortunately, investigating VZV pathogenesis is challenging as VZV is strictly a human pathogen and infection is highly restricted in other species. In addition, few culture models are available for studying the interaction between VZV and human neurons, because the life span of terminally differentiated human neurons in culture is short (Goodwin et al., 2013; Zerboni et al., 2014).
The organotypic raft culture model has been applied in studying VZV. As keratinocytes are the main target cells for productive infection in vivo for VZV, characterization of viral replication in organotypic raft cultures of these cells represents a very relevant model for studying virus-host cell interactions and antiviral agents (Andrei et al., 2005). Researchers have reported that they studied the action of antiviral compounds against VZV in organotypic epithelial raft cultures. The cultures were infected by VZV after 4 to 5 days of human keratinocyte differentiation and treated with serial dilutions of antiviral compounds. The antiviral effects were quantified by determining the viral DNA load by real-time PCR for VZV. Furthermore, this system could be very useful for the study of the interactions between viruses and the skin. The raft cultures have been used as a novel approach for investigating VZV replication in epidermal cells undergoing differentiation (Andrei et al., 2005). Similar research has been described by Mcguigan et al. (2007). Recently, a 3D model of normal human neural progenitor (NHNP) cells in TLAs was used to investigate VZV infection. These cells could be effectively cultured for more than 6 months in 3D culture, and exhibited an expression profile similar to that of human trigeminal ganglia. VZV produced a persistent infection in NHNP cell TLAs, which could be maintained for at least 3 months. This 3D culture system is likely to contribute to deciphering the establishment of VZV latency and reactivation in future studies (Goodwin et al., 2015). Despite advances having been made in understanding VZV-host interactions, numerous questions relating to VZV pathogenesis remain unresolved (Zerboni et al., 2014). 3D culture systems have the potential to provide new approaches for preventing and treating VZV infections, in particular they may provide the cell system required for the generation of high-titer, cell-free attenuated virus for vaccine production.
-
Adenovirus (AdV) is a mildly pathogenic human virus that propagates prolifically in epithelial cells. AdVs have been increasingly used as vectors for gene transfer in tumor cells or as oncolytic viruses (Grill et al., 2002). However, because of incomplete knowledge of the complex virus-cell interactions, the predicted replication selectivity has not been realized. In addition, rodent cells do not allow the complete lytic cycle of human adenovirus (Alemany et al., 2000). Furthermore, specific constraints to adenovirus distribution and spread cannot be studied in cell cultures.
MCSs have been applied in studying the interaction between tumor and adenoviruses. Grill et al. (2002) reported that replication-defective adenoviruses do not penetrate into spheroids; in addition, they described the propagation of replication-competent adenoviruses in spheroids. Organotypic spheroids may provide a useful tool for studying the spread, oncolysis and distribution of adenoviruses. The adenovirus infection process was reproduced in organotypic raft cultures of primary human keratinocytes (Noya et al., 2003). Adenovirus mutants have been found to replicate and promote the killing of cells expressing HPV E6 and E7 oncoproteins, which were present in an organotypic model of human stratified squamous epithelium derived from primary keratinocytes (Balague et al., 2001). More recently, research has demonstrated that adenoviruses could effectively deliver transgenes into the cultured 3D "mini-gut" organoids using adenoviral vectors that expressed fluorescent proteins. The transgene expression could be maintained for at least 10 days. These results were indicative that adenovirus vectors should be explored as effective gene delivery vehicles to introduce genetic manipulations in 3D organoids (Wang et al., 2014).
-
Norwalk virus was first discovered in 1972 (Kapikian et al., 1972) and renamed as norovirus (NoV) in 2002. NoV is a human enteric pathogen causing epidemic foodborne gastroenteritis (Tan and Jiang, 2014). The major barrier to the research and development of effective interventions for NoV has been the lack of a robust and reproducible in vitro cultivation system (Robinson and Pfeiffer, 2014; Ettayebi et al., 2016).
Straub et al. (2007) first developed a 3D culture model with human embryonic intestinal epithelial cells cultured on collagen-Ⅰ porous microcarrier beads, which were infected by genogroup Ⅰ and Ⅱ human NoVs. The results showed that this model could support the natural growth of human NoVs. However, other investigators reported that using these same methods had not been successful. In 2011, Straub et al. (2011) designed another 3D culture model using gastrointestinal epithelial cells (Caco-2); the norovirus viral RNA copy number was significantly increased (> 2 log10) in this 3D Caco-2 cell culture system. The results showed that this model supported norovirus replication. However, Papafragkou et al. (2014) reported that using the 3D cell culture model with Caco-2 cells was not suitable for the replication of norovirus. At present, there is still dispute about 3D culture models for studying NoVs. Further research efforts need to be made in the future.
-
Apart from those viruses reviewed above, the use of 3D culture models for other viruses is currently receiving widespread attention. For example, 3D porcine epithelial cell cultures were designed to help understand the interaction between foot-and-mouth disease virus (FMDV) and porcine mucosal epithelial cells. The results demonstrated that FMDV replicated only transiently without any visible cytopathic effect, and infectious progeny virus could be recovered only from the apical side (Dash et al., 2010). Researchers reported that a panel of clinical human rhinovirus (HRV) species C specimens, including HRV-C2, HRV-C7, HRV-C12, HRV-C15 and HRV-C29 types, were all capable of mediating productive infection in reconstituted 3D human primary upper airway epithelial tissues, and that the virions entered and exited preferentially through the apical surface. This model is considered as a potential tool for modeling the respirat ory epithelium in the study of infections caused not only by HRVs, but also by other respiratory pathogens (Tapparel et al., 2013). In addition, 3D human intestinal enteroid cultures were designed as a novel pathophysiological model for studying human rotavirus infection, host restriction and pathophysiology (Saxena et al., 2015). Furthermore, Lam et al. (2012) demonstrated a method for measuring the impact of infection on the mechanics of a 3D model of connective tissue using human cytomegalovirus. Table 5 shows some information on human virology in 3D cell cultures.
Viruses 3D models Cell types Application in virology References hpv Organotypic raft cultures Primary human
keratinocytesHPV-cancer/other virus
interaction HPV propagation and
infection
HPV life cycle
Evaluating the efficacy of
HPV therapyMole et al., 2009 Fang et al., 2006 Andrei et al., 2010 hiv Organotypic raft cultures Gingival keratinocytes
Primary human
keratinocytesEffect of antiretroviral drugs
on primary gingival
epithelium
Evaluation of multi-targeted
drugsIsrar et al., 2010 Balzarini et al., 2013 hcv 3D/RFB
3D/RWV
Scaffold-based 3D culturesFLC4 cells
Huh-7 cells
HuS-E/2 cell/ Huh-7.5 cellsHCV replication and infection
The life cycle of HCV
Evaluation of anti-HCV drugsMurakami et al., 2008
Sainz et al., 2009
Aly et al., 2009hev RWV bioreactors PLC/PRF/5 cells The viability of virions
HEV replicationBerto et al., 2013 hsv Organotypic raft cultures Immortalized HaCaT
keratin-ocytes
Human keratinocytes
Primary human
keratinocytesHSV-1 infection, replication
and spread
Study of antiviral agentsHukkanen, 1999
Visalli et al., 1997
Balzarini et al., 2013vzv Organotypic raft cultures
Tissue-like assemblies
models using RWV bioreactorPrimary human
keratinocytes
Human neural
progenitor cellsEvaluation of antiviral
compounds
VZV infectionAndrei et al., 2005
Goodwin et al., 2013AdV Multicellular spheroid model
Organotypic raft cultures
3D organoidsPrimary human
keratinocytes
HEK-293 cellsAdenovirus mutants
Adenovirus vectorsNoya et al., 2003
Wang et al., 2014NoV RWV bioreactors Int-407 cells
Caco-2 cellsVirus replication Straub et al., 2007
Straub et al., 2011Table 5. Studies of human viruses using 3D cell culture models