Citation: Dan Shan, Xiaoyan Tang, Renqiang Liu, Dan Pan, Xijun Wang, Jinying Ge, Zhiyuan Wen, Zhigao Bu. Immunogenicity of a recombinant VSV-Vectored SARS-CoV vaccine induced robust immunity in rhesus monkeys after single-dose immunization .VIROLOGICA SINICA, 2022, 37(2) : 248-255.  http://dx.doi.org/10.1016/j.virs.2022.01.002

Immunogenicity of a recombinant VSV-Vectored SARS-CoV vaccine induced robust immunity in rhesus monkeys after single-dose immunization

  • Corresponding author: Zhiyuan Wen, wenzhiyuan@caas.cn
    Zhigao Bu, buzhigao@caas.cn
  • Received Date: 23 February 2021
    Accepted Date: 04 August 2021
    Available online: 12 January 2022
  • Severe acute respiratory syndrome (SARS) is a highly contagious zoonotic disease caused by SARS coronavirus (SARS-CoV). Since its outbreak in Guangdong Province of China in 2002, SARS has caused 8096 infections and 774 deaths by December 31st, 2003. Although there have been no more SARS cases reported in human populations since 2004, the recent emergence of a novel coronavirus disease (COVID-19) indicates the potential of the recurrence of SARS and other coronavirus disease among humans. Thus, developing a rapid response SARS vaccine to provide protection for human populations is still needed. Spike (S) protein of SARS-CoV can induce neutralizing antibodies, which is a pivotal immunogenic antigen for vaccine development. Here we constructed a recombinant chimeric vesicular stomatitis virus (VSV) VSVΔG-SARS, in which the glycoprotein (G) gene is replaced with the SARS-CoV S gene. VSVΔG-SARS maintains the bullet-like shape of the native VSV, with the heterogeneous S protein incorporated into its surface instead of G protein. The results of safety trials revealed that VSVΔG-SARS is safe and effective in mice at a dose of 1×106 TCID50. More importantly, only a single-dose immunization of 2×107 TCID50 can provide high-level neutralizing antibodies and robust T cell responses to non-human primate animal models. Thus, our data indicate that VSVΔG-SARS can be used as a rapid response vaccine candidate. Our study on the recombinant VSV-vectored SARS-CoV vaccines can accumulate experience and provide a foundation for the new coronavirus disease in the future.

  • 加载中
  • 10.1016j.virs.2022.01.002-ESM1.docx
    10.1016j.virs.2022.01.002-ESM2.xlsx
    1. Bukreyev, A., Lamirande, E.W., Buchholz, U.J., Vogel, L.N., Elkins, W.R., St Claire, M., Murphy, B.R., Subbarao, K., Collins, P.L., 2004. Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363, 2122-2127.

    2. Case, J.B., Rothlauf, P.W., Chen, R.E., Kafai, N.M., Fox, J.M., Smith, B.K., Shrihari, S., McCune, B.T., Harvey, I.B., Keeler, S.P., Bloyet, L.M., Zhao, H., Ma, M., Adams, L.J., Winkler, E.S., Holtzman, M.J., Fremont, D.H., Whelan, S.P.J., Diamond, M.S., 2020. Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in mice. Cell Host Microbe 28, 465-474 e464.

    3. Chen, Z., Zhang, L., Qin, C., Ba, L., Yi, C.E., Zhang, F., Wei, Q., He, T., Yu, W., Yu, J., Gao, H., Tu, X., Gettie, A., Farzan, M., Yuen, K.Y., Ho, D.D., 2005. Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J. Virol. 79, 2678-2688.

    4. Coller, B., Blue, J., Das, R., Dubey, S., Finelli, L., Gupta, S., Helmond, F., Grant-Klein, R., Liu, K., Simon, J., Troth, S., VanRheenen, S., Waterbury, J., Wivel, A., Wolf, J., Heppner, D., Kemp, T., Nichols, R., Monath, T., 2017. Clinical development of a recombinant Ebola vaccine in the midst of an unprecedented epidemic. Vaccine 35, 4465-4469.

    5. Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R.A., Berger, A., Burguiere, A.M., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J.C., Muller, S., Rickerts, V., Sturmer, M., Vieth, S., Klenk, H.D., Osterhaus, A.D., Schmitz, H., Doerr, H.W., 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967-1976.

    6. Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B., Jiang, S., 2009. The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 7, 226-236.

    7. Fett, C., DeDiego, M.L., Regla-Nava, J.A., Enjuanes, L., Perlman, S., 2013. Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein. J. Virol. 87, 6551-6559.

    8. Gao, W., Tamin, A., Soloff, A., D'Aiuto, L., Nwanegbo, E., Robbins, P.D., Bellini, W.J., Barratt-Boyes, S., Gambotto, A., 2003. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 362, 1895-1896.

    9. Ge, J., Wang, X., Tao, L., Wen, Z., Feng, N., Yang, S., Xia, X., Yang, C., Chen, H., Bu, Z., 2011. Newcastle disease virus-vectored rabies vaccine is safe, highly immunogenic, and provides long-lasting protection in dogs and cats. J. Virol. 85, 8241-8252.

    10. Ge, J., Wen, Z., Wang, X., Hu, S., Liu, Y., Kong, X., Chen, H., Bu, Z., 2006. Generating vesicular stomatitis virus pseudotype bearing the severe acute respiratory syndrome coronavirus spike envelope glycoprotein for rapid and safe neutralization test or cellentry assay. Ann. N. Y. Acad. Sci. 1081, 246-248.

    11. Graham, R., Donaldson, E., Baric, R., 2013. A decade after SARS:strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 11, 836-848.

    12. Graham, R.L., Becker, M.M., Eckerle, L.D., Bolles, M., Denison, M.R., Baric, R.S., 2012. A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat. Med. 18, 1820-1826.

    13. Gsell, P.S., Camacho, A., Kucharski, A.J., Watson, C.H., Bagayoko, A., Nadlaou, S.D., Dean, N.E., Diallo, A., Diallo, A., Honora, D.A., Doumbia, M., Enwere, G., Higgs, E.S., Mauget, T., Mory, D., Riveros, X., Oumar, F.T., Fallah, M., Toure, A., Vicari, A.S., Longini, I.M., Edmunds, W.J., Henao-Restrepo, A.M., Kieny, M.P., Keita, S., 2017. Ring vaccination with rVSV-ZEBOV under expanded access in response to an outbreak of Ebola virus disease in Guinea, 2016:an operational and vaccine safety report. Lancet Infect. Dis. 17, 1276-1284.

    14. Guan, Y., Zheng, B., He, Y., Liu, X., Zhuang, Z., Cheung, C., Luo, S., Li, P., Zhang, L., Guan, Y., Butt, K., Wong, K., Chan, K., Lim, W., Shortridge, K., Yuen, K., Peiris, J., Poon, L., 2003. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science (New York, N.Y.) 302, 276-278.

    15. He, Y., Zhou, Y., Siddiqui, P., Jiang, S., 2004. Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry. Biochem. Biophys. Res. Commun. 325, 445-452.

    16. Henao-Restrepo, A.M., Camacho, A., Longini, I.M., Watson, C.H., Edmunds, W.J., Egger, M., Carroll, M.W., Dean, N.E., Diatta, I., Doumbia, M., Draguez, B., Duraffour, S., Enwere, G., Grais, R., Gunther, S., Gsell, P.S., Hossmann, S., Watle, S.V., Konde, M.K., Keita, S., Kone, S., Kuisma, E., Levine, M.M., Mandal, S., Mauget, T., Norheim, G., Riveros, X., Soumah, A., Trelle, S., Vicari, A.S., Rottingen, J.A., Kieny, M.P., 2017. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease:final results from the Guinea ring vaccination, openlabel, cluster-randomised trial (Ebola Ca Suffit!). Lancet 389, 505-518.

    17. Kong, D., Wen, Z., Su, H., Ge, J., Chen, W., Wang, X., Wu, C., Yang, C., Chen, H., Bu, Z., 2012. Newcastle disease virus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lasting neutralizing antibodies in pigs. Virology 432, 327-335.

    18. Ksiazek, T., Erdman, D., Goldsmith, C., Zaki, S., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J., Lim, W., Rollin, P., Dowell, S., Ling, A., Humphrey, C., Shieh, W., Guarner, J., Paddock, C., Rota, P., Fields, B., DeRisi, J., Yang, J., Cox, N., Hughes, J., LeDuc, J., Bellini, W., Anderson, L., 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953-1966.

    19. Lawson, N., Stillman, E., Whitt, M., Rose, J., 1995. Recombinant vesicular stomatitis viruses from DNA. In:Proceedings of the National Academy of Sciences of the United States of America, vol. 92, pp. 4477-4481.

    20. Li, F., Li, W., Farzan, M., Harrison, S.C., 2005. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309, 1864-1868.

    21. Liu, R., Wang, J., Shao, Y., Wang, X., Zhang, H., Shuai, L., Ge, J., Wen, Z., Bu, Z., 2018. A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization. Antivir. Res. 150, 30-38.

    22. Liu, R.Q., Ge, J.Y., Wang, J.L., Shao, Y., Zhang, H.L., Wang, J.L., Wen, Z.Y., Bu, Z.G., 2017. Newcastle disease virus-based MERS-CoV candidate vaccine elicits high-level and lasting neutralizing antibodies in Bactrian camels. J. Integr. Agric. 16, 2264-2273.

    23. Liu, Y., Massare, M., Barnard, D., Kort, T., Nathan, M., Wang, L., Smith, G., 2011. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV. Vaccine 29, 6606-6613.

    24. Marzi, A., Menicucci, A., Engelmann, F., Callison, J., Horne, E., Feldmann, F., Jankeel, A., Feldmann, H., Messaoudi, I., 2018. Protection against Marburg virus using a recombinant VSV-vaccine depends on T and B cell activation. Front. Immunol. 9, 3071.

    25. Monath, T., Fast, P., Modjarrad, K., Clarke, D., Martin, B., Fusco, J., Nichols, R., Heppner, D., Simon, J., Dubey, S., Troth, S., Wolf, J., Singh, V., Coller, B., Robertson, J., 2019. rVSVΔG-ZEBOV-GP (also designated V920) recombinant vesicular stomatitis virus pseudotyped with Ebola Zaire Glycoprotein:standardized template with key considerations for a risk/benefit assessment. Vaccine X 1, 100009.

    26. Qin, E., Shi, H., Tang, L., Wang, C., Chang, G., Ding, Z., Zhao, K., Wang, J., Chen, Z., Yu, M., Si, B., Liu, J., Wu, D., Cheng, X., Yang, B., Peng, W., Meng, Q., Liu, B., Han, W., Yin, X., Duan, H., Zhan, D., Tian, L., Li, S., Wu, J., Tan, G., Li, Y., Li, Y., Liu, Y., Liu, H., Lv, F., Zhang, Y., Kong, X., Fan, B., Jiang, T., Xu, S., Wang, X., Li, C., Wu, X., Deng, Y., Zhao, M., Zhu, Q., 2006. Immunogenicity and protective efficacy in monkeys of purified inactivated Vero-cell SARS vaccine. Vaccine 24, 1028-1034.

    27. Ryder, A., Nachbagauer, R., Buonocore, L., Palese, P., Krammer, F., Rose, J., 2015. Vaccination with vesicular stomatitis virus-vectored chimeric hemagglutinins protects mice against divergent influenza virus challenge strains. J. Virol. 90, 2544-2550.

    28. WHO, 2004. WHO Guidelines for the Global Surveillance of Severe Acute Respiratory Syndrome. https://www.who.int/publications/i/item/who-guidelines-for-the-global-surveillance-of-severe-acute-respiratory-syndrome-(-sars). (Accessed 23 February 2021).

    29. Woo, P., Lau, S., Tsoi, H., Chen, Z., Wong, B., Zhang, L., Chan, J., Wong, L., He, W., Ma, C., Chan, K., Ho, D., Yuen, K., 2005. SARS coronavirus spike polypeptide DNA vaccine priming with recombinant spike polypeptide from Escherichia coli as booster induces high titer of neutralizing antibody against SARS coronavirus. Vaccine 23, 4959-4968.

    30. Yahalom-Ronen, Y., Tamir, H., Melamed, S., Politi, B., Shifman, O., Achdout, H., Vitner, E.B., Israeli, O., Milrot, E., Stein, D., Cohen-Gihon, I., Lazar, S., Gutman, H., Glinert, I., Cherry, L., Vagima, Y., Lazar, S., Weiss, S., Ben-Shmuel, A., Avraham, R., Puni, R., Lupu, E., Bar-David, E., Sittner, A., Erez, N., Zichel, R., Mamroud, E., Mazor, O., Levy, H., Laskar, O., Yitzhaki, S., Shapira, S.C., Zvi, A., Beth-Din, A., Paran, N., Israely, T., 2020. A single dose of recombinant VSV-G-spike vaccine provides protection against SARS-CoV-2 challenge. Nat. Commun. 11, 6402.

    31. Zhao, P., Ke, J.S., Qin, Z.L., Ren, H., Zhao, L.J., Yu, J.G., Gao, J., Zhu, S.Y., Qi, Z.T., 2004. DNA vaccine of SARS-Cov S gene induces antibody response in mice. Acta Biochim. Biophys. Sin. 36, 37-41.

    32. Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao, G.F., Shi, Z.L., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273.

    33. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F., Tan, W., China Novel Coronavirus, I., Research, T., 2020. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727-733.

  • 加载中

Article Metrics

Article views(5172) PDF downloads(20) Cited by()

Related
Proportional views

    Immunogenicity of a recombinant VSV-Vectored SARS-CoV vaccine induced robust immunity in rhesus monkeys after single-dose immunization

      Corresponding author: Zhiyuan Wen, wenzhiyuan@caas.cn
      Corresponding author: Zhigao Bu, buzhigao@caas.cn
    • a State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
    • b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225127, China

    Abstract: Severe acute respiratory syndrome (SARS) is a highly contagious zoonotic disease caused by SARS coronavirus (SARS-CoV). Since its outbreak in Guangdong Province of China in 2002, SARS has caused 8096 infections and 774 deaths by December 31st, 2003. Although there have been no more SARS cases reported in human populations since 2004, the recent emergence of a novel coronavirus disease (COVID-19) indicates the potential of the recurrence of SARS and other coronavirus disease among humans. Thus, developing a rapid response SARS vaccine to provide protection for human populations is still needed. Spike (S) protein of SARS-CoV can induce neutralizing antibodies, which is a pivotal immunogenic antigen for vaccine development. Here we constructed a recombinant chimeric vesicular stomatitis virus (VSV) VSVΔG-SARS, in which the glycoprotein (G) gene is replaced with the SARS-CoV S gene. VSVΔG-SARS maintains the bullet-like shape of the native VSV, with the heterogeneous S protein incorporated into its surface instead of G protein. The results of safety trials revealed that VSVΔG-SARS is safe and effective in mice at a dose of 1×106 TCID50. More importantly, only a single-dose immunization of 2×107 TCID50 can provide high-level neutralizing antibodies and robust T cell responses to non-human primate animal models. Thus, our data indicate that VSVΔG-SARS can be used as a rapid response vaccine candidate. Our study on the recombinant VSV-vectored SARS-CoV vaccines can accumulate experience and provide a foundation for the new coronavirus disease in the future.

    Reference (33) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return