Citation: Xiaohui Zou, Shengrui Mu, Yeming Wang, Li Guo, Lili Ren, Xiaoyan Deng, Haibo Li, Jiankang Zhao, Yulin Zhang, Hui Li, Binghuai Lu, Chaolin Huang, Bin Cao. Characterization of two SARS-CoV-2 subgenomic RNA dynamics in severe COVID-19 patients .VIROLOGICA SINICA, 2022, 37(1) : 30-37.  http://dx.doi.org/10.1016/j.virs.2022.01.008

Characterization of two SARS-CoV-2 subgenomic RNA dynamics in severe COVID-19 patients

  • Corresponding author: Bin Cao, caobin_ben@163.com
  • Received Date: 28 April 2021
    Accepted Date: 29 December 2021
    Available online: 17 January 2022
  • Little is known about Subgenomic RNA (sgRNA) dynamics in patients with Coronavirus diseases 2019 (COVID-19). We collected 147 throat swabs, 74 gut swabs and 46 plasma samples from 117 COVID-19 patients recruited in the LOTUS China trial (ChiCTR2000029308) and compared E and orf7a sgRNA load in patients with different illness duration, outcome, and comorbidities. Both sgRNAs were detected in all the three types of samples, with longest duration of 25, 13, and 17 days for E sgRNA, and 32, 28, and 17 days for orf7a sgRNA in throat, gut, and plasma, respectively. A total of 95% (57/60) of patients had no E sgRNA detected after 10 days post treatment, though 86% of them were still E RNA positive. High correlation on titer was observed between sgRNA encoding E and orf7a gene. sgRNA showed similar variation in the standard care and Lopinavir-Ritonavir group. Patients with diabetes and heart diseases showed higher pharyngeal E sgRNA at the first day (P = 0.016 and 0.013, respectively) but no difference at five days after treatment, compared with patients without such commodities. Patients with hypertension and cerebrovascular diseases showed no difference in the pharyngeal sgRNA levels at both one and five days after treatment, compared with patients without these two commodities. E sgRNA levels in the initial infection showed no correlation with the serum antibody against spike, nucleoprotein, and receptor binding domains at ten days later. sgRNA lasted a long period in COVID-19 patients and might have little effect on humoral response.

  • 加载中
  • 10.1016j.virs.2022.01.008-ESM1.xlsx
    10.1016j.virs.2022.01.008-ESM2.docx
    10.1016j.virs.2022.01.008-ESM3.pdf
    10.1016j.virs.2022.01.008-ESM4.pdf
    10.1016j.virs.2022.01.008-ESM5.pdf
    10.1016j.virs.2022.01.008-ESM6.pdf
    1. Alexandersen, S., Chamings, A., Bhatta, T.R., 2020. SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication. Nat. Commun. 11, 1-13.

    2. Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., Yuan, Y., Chen, H., Li, H., Huang, H., Tu, S., Gong, F., Liu, Y., Wei, Y., Dong, C., Zhou, F., Gu, X., Xu, J., Liu, Z., Zhang, Y., Li, H., Shang, L., Wang, K., Li, K., Zhou, X., Dong, X., Qu, Z., Lu, S., Hu, X., Ruan, S., Luo, S., Wu, J., Peng, L., Cheng, F., Pan, L., Zou, J., Jia, C., Wang, J., Liu, X., Wang, S., Wu, X., Ge, Q., He, J., Zhan, H., Qiu, F., Guo, L., Huang, C., Jaki, T., Hayden, F.G., Horby, P.W., Zhang, D., Wang, C., 2020. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 382:1787-1799.

    3. Cevik, M., Tate, M., Lloyd, O., Maraolo, A.E., Schafers, J., Ho, A., 2021. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe 2, e13-e22.

    4. Corman, V.M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D.K., Bleicker, T., Brunink, S., Schneider, J., Schmidt, M.L., Mulders, D.G., Haagmans, B.L., van der Veer, B., van den Brink, S., Wijsman, L., Goderski, G., Romette, J.L, Ellis, J., Zambon, M., Peiris, M., Goossens, H., Reusken, C., Koopmans, M.P, Drosten, C., 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 25, 2000045.

    5. Finkel, Y., Mizrahi, O., Nachshon, A., Weingarten-Gabbay, S., Morgenstern, D., Yahalom-Ronen, Y., Tamir, H., Achdout, H., Stein, D., Israeli, O., Beth-Din, A., Melamed, S., Weiss, S., Israely, T., Paran, N., Schwartz, M., Stern-Ginossar, N., 2021. The coding capacity of SARS-CoV-2. Nature 589, 125-130.

    6. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J., Cao, B., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet 395, 497-506.

    7. Kim, D., Lee, J.-Y., Yang, J.-S., Kim, J.W., Kim, V.N., Chang, H., 2020. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914-921.

    8. Lee, S., Kim, T., Lee, E., Lee, C., Kim, H., Rhee, H., Park, S.Y., Son, H.-J., Yu, S., Park, J.W., Park JW, Choo, E.J., Park, S., Loeb, M,. Kim, T.H., 2020. Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a community treatment center in the Republic of Korea. JAMA Intern. Med. 180, 1447-1452.

    9. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., Chen, J., Meng, Y., Wang, J., Lin, Y., Yuan, J., Xie, Z., Ma, J., Liu, W.J., Wang, D., Xu, W., Holmes, E.C., Gao, G.F., Wu, G., Chen, W., Shi, W., Tan, W., 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The lancet 395, 565-574.

    10. Magleby, R., Westblade, L.F., Trzebucki, A., Simon, M.S., Rajan, M., Park, J., Goyal, P., Safford, M.M., Satlin, M.J., 2021. Impact of severe acute respiratory syndrome coronavirus 2 viral load on risk of intubation and mortality among hospitalized patients with coronavirus disease 2019. Clin. Infect. Dis. 73, e4197-e4205.

    11. Maltezou, H.C., Raftopoulos, V., Vorou, R., Papadima, K., Mellou, K., Spanakis, N., Kossyvakis, A., Gioula, G., Exindari, M., Froukala, E., Martinez-Gonzalez, B., Panayiotakopoulos, G., Papa, A., Mentis, A., Tsakris, A.,2021. Association between upper respiratory tract viral load, comorbidities, disease severity, and outcome of patients with SARS-CoV-2 infection. J. Infect. Dis. 223, 1132-1138.

    12. Moreira, L.V.L., de Souza Luna, L.K., Barbosa, G.R., Perosa, A.H., Chaves, A.P.C., Conte, D.D., Carvalho, J.M.A., Bellei, N., 2021. Test on stool samples improves the diagnosis of hospitalized patients: Detection of SARS-CoV-2 genomic and subgenomic RNA. J. Infect. 82, 186-230.

    13. Nishiga, M., Wang, D.W., Han, Y., Lewis, D.B., Wu, J.C., 2020. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 17, 543-558.

    14. Nomburg, J., Meyerson, M., DeCaprio, J.A., 2020. Pervasive generation of non-canonical subgenomic RNAs by SARS-CoV-2. Genome Med. 12, 1-14.

    15. Park, W.B., Poon, L.L., Choi, S.-J., Choe, P.G., Song, K.-H., Bang, J.H., Kim, E.S., Kim, H.B., Park, S.W., Kim, N.J., Peiris, M., Oh, M.D., 2018. Replicative virus shedding in the respiratory tract of patients with Middle East respiratory syndrome coronavirus infection. Int. J. Infect. Dis. 72, 8-10.

    16. Perera, R.A., Tso, E., Tsang, O.T., Tsang, D.N., Fung, K., Leung, Y.W., Chin, A.W., Chu, D.K., Cheng, S.M., Poon, L.L., Chuang, V.W.M., Peiris, M., 2020. SARS-CoV-2 virus culture and subgenomic RNA for respiratory specimens from patients with mild coronavirus disease. Emerg. Infect. Dis. 26, 2701.

    17. Petersen, E., Koopmans, M., Go, U., Hamer, D.H., Petrosillo, N., Castelli, F., Storgaard, M., Al Khalili, S., Simonsen, L., 2020. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect. Dis. 20:e238-e244.

    18. Rambaut, A., Holmes, E.C., O’Toole, A., Hill, V., McCrone, J.T., Ruis, C., du Plessis, L., Pybus, O.G., 2020. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 5, 1403-1407.

    19. Ren, L., Fan, G., Wu, W., Guo, L., Wang, Yeming, Li, X., Wang, C., Gu, X., Li, C., Wang, Y., Wang, G., Zhou, F., Liu, Z., Ge, Q., Zhang, Y., Li, H., Zhang, L., Xu, J., Wang, C., Wang, J., Cao, B., 2021. Antibody Responses and Clinical Outcomes in Adults Hospitalized With Severe Coronavirus Disease 2019 (COVID-19): A Post hoc Analysis of LOTUS China Trial. Clin. Infect. Dis. 72, e545-e551.

    20. Sawicki, S.G., Sawicki, D.L., Siddell, S.G., 2007. A contemporary view of coronavirus transcription. J. Virol. 81, 20-29.

    21. Sola, I., Almazan, F., Zuniga, S., Enjuanes, L., 2015. Continuous and discontinuous RNA synthesis in coronaviruses. Annu. Rev. Virol. 2, 265-288.

    22. van Kampen, J.J., van de Vijver, D.A., Fraaij, P.L., Haagmans, B.L., Lamers, M.M., Okba, N., van den Akker, J.P., Endeman, H., Gommers, D.A., Cornelissen, J.J., Hoek, RAS., van der Eerden.M.M, Hesselink, D.A., Metselaar, H.J, Verbon, A., de Steenwinkel, J.E.M., Aron, G.I., van Gorp, E.C.M, van Boheemen, S., Voermans, J.C., Boucher, C.A.B., Molenkamp, R., Koopmans, M.P.G, Geurtsvankessel, C., van der Eijk, A.A., 2021. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat. Commun. 12, 1-6.

    23. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J, Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A, Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods. 17, 261-272.

    24. Walsh, K.A., Spillane, S., Comber, L., Cardwell, K., Harrington, P., Connell, J., Teljeur, C., Broderick, N., de Gascun, C.F., Smith, S.M., Ryan, M., O'Neill, M., 2020. The duration of infectiousness of individuals infected with SARS-CoV-2. J. Infect. 81:847-856.

    25. Wolfel, R., Corman, V.M., Guggemos, W., Seilmaier, M., Zange, S., Muller, M.A., Niemeyer, D., Jones, T.C., Vollmar, P., Rothe, C., Hoelscher, M., Bleicker, T., Brunink, S., Schneider, J., Ehmann, R., Zwirglmaier, K., Drosten, C., Wendtner, C., 2020. Virological assessment of hospitalized patients with COVID-2019. Nature 581, 465-469.

    26. Wu, L., O’Kane, A.M., Peng, H., Bi, Y., Motriuk-Smith, D., Ren, J., 2020. SARS-CoV-2 and cardiovascular complications: from molecular mechanisms to pharmaceutical management. Biochem. Pharmacol. 178, 114114.

    27. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F., Tan, W., 2020. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382:727-733

  • 加载中

Article Metrics

Article views(4236) PDF downloads(16) Cited by()

Related
Proportional views

    Characterization of two SARS-CoV-2 subgenomic RNA dynamics in severe COVID-19 patients

      Corresponding author: Bin Cao, caobin_ben@163.com
    • a Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, China
    • b National Center for Respiratory Medicine, Beijing, 100029, China
    • c Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
    • d Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, 100069, China

    Abstract: Little is known about Subgenomic RNA (sgRNA) dynamics in patients with Coronavirus diseases 2019 (COVID-19). We collected 147 throat swabs, 74 gut swabs and 46 plasma samples from 117 COVID-19 patients recruited in the LOTUS China trial (ChiCTR2000029308) and compared E and orf7a sgRNA load in patients with different illness duration, outcome, and comorbidities. Both sgRNAs were detected in all the three types of samples, with longest duration of 25, 13, and 17 days for E sgRNA, and 32, 28, and 17 days for orf7a sgRNA in throat, gut, and plasma, respectively. A total of 95% (57/60) of patients had no E sgRNA detected after 10 days post treatment, though 86% of them were still E RNA positive. High correlation on titer was observed between sgRNA encoding E and orf7a gene. sgRNA showed similar variation in the standard care and Lopinavir-Ritonavir group. Patients with diabetes and heart diseases showed higher pharyngeal E sgRNA at the first day (P = 0.016 and 0.013, respectively) but no difference at five days after treatment, compared with patients without such commodities. Patients with hypertension and cerebrovascular diseases showed no difference in the pharyngeal sgRNA levels at both one and five days after treatment, compared with patients without these two commodities. E sgRNA levels in the initial infection showed no correlation with the serum antibody against spike, nucleoprotein, and receptor binding domains at ten days later. sgRNA lasted a long period in COVID-19 patients and might have little effect on humoral response.

    Reference (27) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return