Citation: Yang Li, Hao-Rui Si, Yan Zhu, Nan Xie, Bei Li, Xiang-Ping Zhang, Jun-Feng Han, Hong-Hong Bao, Yong Yang, Kai Zhao, Zi-Yuan Hou, Si-Jia Cheng, Shuan-Hu Zhang, Zheng-Li Shi, Peng Zhou. Characteristics of SARS-CoV-2 transmission in a medium-sized city with traditional communities during the early COVID-19 epidemic in China .VIROLOGICA SINICA, 2022, 37(2) : 187-197.  http://dx.doi.org/10.1016/j.virs.2022.01.030

Characteristics of SARS-CoV-2 transmission in a medium-sized city with traditional communities during the early COVID-19 epidemic in China

  • The nationwide COVID-19 epidemic ended in 2020, a few months after its outbreak in Wuhan, China at the end of 2019. Most COVID-19 cases occurred in Hubei Province, with a few local outbreaks in other provinces of China. A few studies have reported the early SARS-CoV-2 epidemics in several large cities or provinces of China. However, information regarding the early epidemics in small and medium-sized cities, where there are still traditionally large families and community culture is more strongly maintained and thus, transmission profiles may differ, is limited. In this study, we characterized 60 newly sequenced SARS-CoV-2 genomes from Anyang as a representative of small and medium-sized Chinese cities, compared them with more than 400 reference genomes from the early outbreak, and studied the SARS-CoV-2 transmission profiles. Genomic epidemiology revealed multiple SARS-CoV-2 introductions in Anyang and a large-scale expansion of the epidemic because of the large family size. Moreover, our study revealed two transmission patterns in a single outbreak, which were attributed to different social activities. We observed the complete dynamic process of single-nucleotide polymorphism development during community transmission and found that intrahost variant analysis was an effective approach to studying cluster infections. In summary, our study provided new SARS-CoV-2 transmission profiles representative of small and medium-sized Chinese cities as well as information on the evolution of SARS-CoV-2 strains during the early COVID-19 epidemic in China.

  • 加载中
  • 10.1016j.virs.2022.01.030-ESM.docx
    1. Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.Y., Chen, L., Wang, M., 2020. Presumed asymptomatic carrier transmission of COVID-19. JAMA 323, 1406-1407.

    2. Boehm, E., Kronig, I., Neher, R.A., Eckerle, I., Vetter, P., Kaiser, L., 2021. Geneva centre for emerging viral D (2021) novel SARS-CoV-2 variants:the pandemics within the pandemic. Clin. Microbiol. Infect. 27, 1109-1117.

    3. Cao, C., Hemuti, M., Zhiyuan, J., Xiang, Z., Dayan, W., Jun, Z., Zhenguo, G., Peipei, L., Yang, S., Zhixiao, C., Yuchao, W., Yao, M., Guizhen, W., Wenbo, X., Xucheng, F., Yong, Z., 2020. Reemergent cases of COVID-19-Xinjiang Uygur autonomous region, China, July 16, 2020. China CDC Weekly 2, 761-763.

    4. Chaudhari, A., Chaudhari, M., Mahera, S., Saiyed, Z., Nathani, N.M., Shukla, S., Patel, D., Patel, C., Joshi, M., Joshi, C.G., 2021. In-Silico analysis reveals lower transcription efficiency of C241T variant of SARS-CoV-2 with host replication factors MADP1 and hnRNP-1. Inform Med Unlocked 25, 100670.

    5. Du, P., Ding, N., Li, J., Zhang, F., Wang, Q., Chen, Z., Song, C., Han, K., Xie, W., Liu, J., Wang, L., Wei, L., Ma, S., Hua, M., Yu, F., Wang, L., Wang, W., An, K., Chen, J., Liu, H., Gao, G., Wang, S., Huang, Y., Wu, A.R., Wang, J., Liu, D., Zeng, H., Chen, C., 2020. Genomic surveillance of COVID-19 cases in Beijing. Nat. Commun. 11, 5503.

    6. England, P.H., 2020. Investigation of SARS-CoV-2 Variants of Concern:Technical Briefings. (Accessed 20 January 2022). https://www.gov.uk/government/publicat ions/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201.

    7. Faria, N.R., Mellan, T.A., Whittaker, C., Claro, I.M., Candido, D.D.S., Mishra, S., Crispim, M.A.E., Sales, F.C., Hawryluk, I., McCrone, J.T., Hulswit, R.J.G., Franco, L.A.M., Ramundo, M.S., de Jesus, J.G., Andrade, P.S., Coletti, T.M., Ferreira, G.M., Silva, C.A.M., Manuli, E.R., Pereira, R.H.M., Peixoto, P.S., Kraemer, M.U., Gaburo Jr., N., Camilo, C.D.C., Hoeltgebaum, H., Souza, W.M., Rocha, E.C., de Souza, L.M., de Pinho, M.C., Araujo, L.J.T., Malta, F.S.V., de Lima, A.B., Silva, J.D.P., Zauli, D.A.G., de, S.F.A.C., Schnekenberg, R.P., Laydon, D.J., Walker, P.G.T., Schluter, H.M., Dos Santos, A.L.P., Vidal, M.S., Del Caro, V.S., Filho, R.M.F., Dos Santos, H.M., Aguiar, R.S., Modena, J.L.P., Nelson, B., Hay, J.A., Monod, M., Miscouridou, X., Coupland, H., Sonabend, R., Vollmer, M., Gandy, A., Suchard, M.A., Bowden, T.A., Pond, S.L.K., Wu, C.H., Ratmann, O., Ferguson, N.M., Dye, C., Loman, N.J., Lemey, P., Rambaut, A., Fraiji, N.A., Carvalho, M., Pybus, O.G., Flaxman, S., Bhatt, S., Sabino, E.C., 2021. Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil. medRxiv.

    8. Gomez-Carballa, A., Bello, X., Pardo-Seco, J., Martinon-Torres, F., Salas, A., 2020. Mapping genome variation of SARS-CoV-2 worldwide highlights the impact of COVID-19 super-spreaders. Genome Res. 30, 1434-1448.

    9. Gupta, R.K., 2021. Will SARS-CoV-2 variants of concern affect the promise of vaccines? Nat. Rev. Immunol. 21, 340-341.

    10. Hu, B., Jin, J., Guo, A.Y., Zhang, H., Luo, J., Gao, G., 2015. GSDS 2.0:an upgraded gene feature visualization server. Bioinformatics 31, 1296-1297.

    11. Katoh, K., Rozewicki, J., Yamada, K.D., 2019. MAFFT online service:multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinf. 20, 1160-1166.

    12. Koyama, T., Platt, D., Parida, L., 2020. Variant analysis of SARS-CoV-2 genomes. Bull. World Health Organ. 98, 495-504.

    13. Leigh, J.W., Bryant, D., 2015. popart:full-feature software for haplotype network construction. Methods in Ecology and Evolution 6, 1110-1116.

    14. Lemieux, J.E., Siddle, K.J., Shaw, B.M., Loreth, C., Schaffner, S.F., Gladden-Young, A., Adams, G., Fink, T., Tomkins-Tinch, C.H., Krasilnikova, L.A., DeRuff, K.C., Rudy, M., Bauer, M.R., Lagerborg, K.A., Normandin, E., Chapman, S.B., Reilly, S.K., Anahtar, M.N., Lin, A.E., Carter, A., Myhrvold, C., Kemball, M.E., Chaluvadi, S., Cusick, C., Flowers, K., Neumann, A., Cerrato, F., Farhat, M., Slater, D., Harris, J.B., Branda, J.A., Hooper, D., Gaeta, J.M., Baggett, T.P., O'Connell, J., Gnirke, A., Lieberman, T.D., Philippakis, A., Burns, M., Brown, C.M., Luban, J., Ryan, E.T., Turbett, S.E., LaRocque, R.C., Hanage, W.P., Gallagher, G.R., Madoff, L.C., Smole, S., Pierce, V.M., Rosenberg, E., Sabeti, P.C., Park, D.J., MacInnis, B.L., 2020. Phylogenetic analysis of SARS-CoV-2 in Boston highlights the impact of superspreading events. Science 371, eabe3261.

    15. Letunic, I., Bork, P., 2021. Interactive Tree of Life (iTOL) v5:an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293-W296.

    16. Lu, J., du Plessis, L., Liu, Z., Hill, V., Kang, M., Lin, H., Sun, J., Francois, S., Kraemer, M.U.G., Faria, N.R., McCrone, J.T., Peng, J., Xiong, Q., Yuan, R., Zeng, L., Zhou, P., Liang, C., Yi, L., Liu, J., Xiao, J., Hu, J., Liu, T., Ma, W., Li, W., Su, J., Zheng, H., Peng, B., Fang, S., Su, W., Li, K., Sun, R., Bai, R., Tang, X., Liang, M., Quick, J., Song, T., Rambaut, A., Loman, N., Raghwani, J., Pybus, O.G., Ke, C., 2020. Genomic epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell 181, 997-1003 e1009.

    17. Luo, Y., Yu, F., Zhou, M., Liu, Y., Xia, B., Zhang, X., Liu, J., Zhang, J., Du, Y., Li, R., Wu, L., Zhang, X., Pan, T., Guo, D., Peng, T., Zhang, H., 2021. Engineering a reliable and convenient SARS-CoV-2 replicon system for analysis of viral RNA synthesis and screening of antiviral inhibitors. mBio 12, e02754-20.

    18. Oxford Virus Sequencing Analysis G Lythgoe, K.A., Hall, M., Ferretti, L., de Cesare, M., MacIntyre-Cockett, G., Trebes, A., Andersson, M., Otecko, N., Wise, E.L., Moore, N., Lynch, J., Kidd, S., Cortes, N., Mori, M., Williams, R., Vernet, G., Justice, A., Green, A., Nicholls, S.M., Ansari, M.A., Abeler-Dorner, L., Moore, C.E., Peto, T.E.A., Eyre, D.W., Shaw, R., Simmonds, P., Buck, D., Todd, J.A., Connor, T.R., Ashraf, S., da Silva Filipe, A., Shepherd, J., Thomson, E.C., Consortium, C.-G.U., Bonsall, D., Fraser, C., Golubchik, T., 2021. SARS-CoV-2 within-host diversity and transmission. Science 372, eabg0821.

    19. Nie, Q., Li, X., Chen, W., Liu, D., Chen, Y., Li, H., Li, D., Tian, M., Tan, W., Zai, J., 2020. Phylogenetic and phylodynamic analyses of SARS-CoV-2. Virus Res. 287, 198098.

    20. Pang, X., Ren, L., Wu, S., Ma, W., Yang, J., Di, L., Li, J., Xiao, Y., Kang, L., Du, S., Du, J., Wang, J., Li, G., Zhai, S., Chen, L., Zhou, W., Lai, S., Gao, L., Pan, Y., Wang, Q., Li, M., Wang, J., Huang, Y., Wang, J., Group, C.-F.R., Group, C.-L.T., 2020. Cold-chain food contamination as the possible origin of Covid-19 resurgence in Beijing. Natl. Sci. Rev. 7, 1861-1864.

    21. Popa, A., Genger, J.W., Nicholson, M.D., Penz, T., Schmid, D., Aberle, S.W., Agerer, B., Lercher, A., Endler, L., Colaco, H., Smyth, M., Schuster, M., Grau, M.L., MartinezJimenez, F., Pich, O., Borena, W., Pawelka, E., Keszei, Z., Senekowitsch, M., Laine, J., Aberle, J.H., Redlberger-Fritz, M., Karolyi, M., Zoufaly, A., Maritschnik, S., Borkovec, M., Hufnagl, P., Nairz, M., Weiss, G., Wolfinger, M.T., von Laer, D., SupertiFurga, G., Lopez-Bigas, N., Puchhammer-Stockl, E., Allerberger, F., Michor, F., Bock, C., Bergthaler, A., 2020. Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2. Sci. Transl. Med. 12, eabe2555.

    22. Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., 2018. Posterior summarization in Bayesian Phylogenetics using tracer 1.7. Syst. Biol. 67, 901-904.

    23. Rambaut, A., Holmes, E.C., O'Toole, A., Hill, V., McCrone, J.T., Ruis, C., du Plessis, L., Pybus, O.G., 2020. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol 5, 1403-1407.

    24. Rambaut, A., Lam, T.T., Max Carvalho, L., Pybus, O.G., 2016. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol 2, vew007.

    25. Ruan, Y., Hou, M., Li, J., Song, Y., Wang, H.-Y., He, X., Zeng, H., Lu, J., Wen, H., Chen, C., Wu, C.-I., 2021. One viral sequence for each host?-the neglected within-host diversity as the main stage of SARS-CoV-2 evolution. bioRxiv:2021 449205, 2006.2021.

    26. Shiwei, L., Shuhua, Y., Yinqi, S., Baoguo, Z., Huazhi, W., Jinxing, L., Wenjie, T., Xiaoqiu, L., Qi, Z., Yunting, X., Xifang, L., Jianguo, L., Yan, G., 2021. A COVID-19 outbreak-Nangong city, Hebei Province, China, January 2021. China CDC Weekly 3, 401-404.

    27. Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J., Rambaut, A., 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol 4, vey016.

    28. Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., Lu, J., 2020. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev. 7, 1012-1023.

    29. Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay, S., San, E.J., Msomi, N., Mlisana, K., von Gottberg, A., Walaza, S., Allam, M., Ismail, A., Mohale, T., Glass, A.J., Engelbrecht, S., Van Zyl, G., Preiser, W., Petruccione, F., Sigal, A., Hardie, D., Marais, G., Hsiao, N.Y., Korsman, S., Davies, M.A., Tyers, L., Mudau, I., York, D., Maslo, C., Goedhals, D., Abrahams, S., Laguda-Akingba, O., Alisoltani-Dehkordi, A., Godzik, A., Wibmer, C.K., Sewell, B.T., Lourenco, J., Alcantara, L.C.J., Kosakovsky Pond, S.L., Weaver, S., Martin, D., Lessells, R.J., Bhiman, J.N., Williamson, C., de Oliveira, T., 2021. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592, 438-443.

    30. Wang, D., Wang, Y., Sun, W., Zhang, L., Ji, J., Zhang, Z., Cheng, X., Li, Y., Xiao, F., Zhu, A., Zhong, B., Ruan, S., Li, J., Ren, P., Ou, Z., Xiao, M., Li, M., Deng, Z., Zhong, H., Li, F., Wang, W.J., Zhang, Y., Chen, W., Zhu, S., Xu, X., Jin, X., Zhao, J., Zhong, N., Zhang, W., Zhao, J., Li, J., Xu, Y., 2021a. Population bottlenecks and intra-host evolution during human-to-human transmission of SARS-CoV-2. Front Med(Lausanne) 8, 585358.

    31. Wang, Y., Wang, D., Zhang, L., Sun, W., Zhang, Z., Chen, W., Zhu, A., Huang, Y., Xiao, F., Yao, J., Gan, M., Li, F., Luo, L., Huang, X., Zhang, Y., Wong, S.S., Cheng, X., Ji, J., Ou, Z., Xiao, M., Li, M., Li, J., Ren, P., Deng, Z., Zhong, H., Xu, X., Song, T., Mok, C.K.P., Peiris, M., Zhong, N., Zhao, J., Li, Y., Li, J., Zhao, J., 2021b. Intra-host variation and evolutionary dynamics of SARS-CoV-2 populations in COVID-19 patients. Genome Med. 13, 30.

    32. Xiang, Z., Lingling, M., Jianqun, Z., Yong, Z., Yang, S., Zhijian, B., Hong, W., Ji, W., Cao, C., Jinbo, X., Tianjiao, J., Qian, Y., Wenbo, X., Dayan, W., Wenqing, Y., 2020. Reemergent cases of COVID-19-Dalian city, Liaoning Province, China, July 22, 2020. China CDC Weekly 2, 658-660.

    33. Xiao, M., Liu, X., Ji, J., Li, M., Li, J., Yang, L., Sun, W., Ren, P., Yang, G., Zhao, J., Liang, T., Ren, H., Chen, T., Zhong, H., Song, W., Wang, Y., Deng, Z., Zhao, Y., Ou, Z., Wang, D., Cai, J., Cheng, X., Feng, T., Wu, H., Gong, Y., Yang, H., Wang, J., Xu, X., Zhu, S., Chen, F., Zhang, Y., Chen, W., Li, Y., Li, J., 2020. Multiple approaches for massively parallel sequencing of SARS-CoV-2 genomes directly from clinical samples. Genome Med. 12, 57.

    34. Zhang, W., Du, R.H., Li, B., Zheng, X.S., Yang, X.L., Hu, B., Wang, Y.Y., Xiao, G.F., Yan, B., Shi, Z.L., Zhou, P., 2020a. Molecular and serological investigation of 2019-nCoV infected patients:implication of multiple shedding routes. Emerg. Microb. Infect. 9, 386-389.

    35. Zhang, X., Tan, Y., Ling, Y., Lu, G., Liu, F., Yi, Z., Jia, X., Wu, M., Shi, B., Xu, S., Chen, J., Wang, W., Chen, B., Jiang, L., Yu, S., Lu, J., Wang, J., Xu, M., Yuan, Z., Zhang, Q., Zhang, X., Zhao, G., Wang, S., Chen, S., Lu, H., 2020b. Viral and host factors related to the clinical outcome of COVID-19. Nature 583, 437-440.

    36. Zhang, Y., Yin, Q., Ni, M., Liu, T., Wang, C., Song, C., Liao, L., Xing, H., Jiang, S., Shao, Y., Chen, C., Ma, L., 2021. Dynamics of HIV-1 quasispecies diversity of participants on long-term antiretroviral therapy based on intrahost single-nucleotide variations. Int. J. Infect. Dis. 104, 306-314.

    37. Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao, G.F., Shi, Z.L., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273.

  • 加载中

Article Metrics

Article views(5338) PDF downloads(11) Cited by()

Related
Proportional views

    Characteristics of SARS-CoV-2 transmission in a medium-sized city with traditional communities during the early COVID-19 epidemic in China

      Corresponding author: Shuan-Hu Zhang, ayzshlx@163.com
      Corresponding author: Zheng-Li Shi, zlshi@wh.iov.cn
      Corresponding author: Peng Zhou, peng.zhou@wh.iov.cn
    • a CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
    • b Anyang Municipal Center for Disease Control and Prevention, Anyang, 455000, China
    • c University of Chinese Academy of Sciences, Beijing, 101409, China

    Abstract: The nationwide COVID-19 epidemic ended in 2020, a few months after its outbreak in Wuhan, China at the end of 2019. Most COVID-19 cases occurred in Hubei Province, with a few local outbreaks in other provinces of China. A few studies have reported the early SARS-CoV-2 epidemics in several large cities or provinces of China. However, information regarding the early epidemics in small and medium-sized cities, where there are still traditionally large families and community culture is more strongly maintained and thus, transmission profiles may differ, is limited. In this study, we characterized 60 newly sequenced SARS-CoV-2 genomes from Anyang as a representative of small and medium-sized Chinese cities, compared them with more than 400 reference genomes from the early outbreak, and studied the SARS-CoV-2 transmission profiles. Genomic epidemiology revealed multiple SARS-CoV-2 introductions in Anyang and a large-scale expansion of the epidemic because of the large family size. Moreover, our study revealed two transmission patterns in a single outbreak, which were attributed to different social activities. We observed the complete dynamic process of single-nucleotide polymorphism development during community transmission and found that intrahost variant analysis was an effective approach to studying cluster infections. In summary, our study provided new SARS-CoV-2 transmission profiles representative of small and medium-sized Chinese cities as well as information on the evolution of SARS-CoV-2 strains during the early COVID-19 epidemic in China.

    Reference (37) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return