For best viewing of the website please use Mozilla Firefox or Google Chrome.
Citation: Shiwen Wang, Ying Liu, Yang Qiu, Qian Dou, Yang Han, Muhan Huang, Ke Hong, Bei Yang, Xi Zhou, Qing Dai. Saliva-based point-of-care testing techniques for COVID-19 detection [J].VIROLOGICA SINICA, 2022, 37(3) : 472-476.  http://dx.doi.org/10.1016/j.virs.2022.04.004

Saliva-based point-of-care testing techniques for COVID-19 detection

  • Highlights
    1. The advantages of COVID-19 detection in saliva were systematically introduced.
    2. Saliva-based POCT technologies for the detection of COVID-19 were reviewed.
    3. A positive correlation between COVID-19 antibodies in saliva and serum was demonstrated.

  • 加载中
  • 10.1016j.virs.2022.04.004-ESM.docx
    1. Alafeef, M., Moitra, P., Dighe, K., Pan, D., 2021. RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nat. Protoc. 16, 3141-3162.

    2. Bellagambi, F.G., Lomonaco, T., Salvo, P., Vivaldi, F., Hangouet, M., Ghimenti, S., Biagini, D., Di Francesco, F., Fuoco, R., Errachid, A., 2020. Saliva sampling:methods and devices. An overview. Trac. Trends Anal. Chem. 124, 115781.

    3. Broughton, J.P., Deng, X., Yu, G., Fasching, C.L., Servellita, V., Singh, J., Miao, X., Streithorst, J.A., Granados, A., Sotomayor-Gonzalez, A., Zorn, K., Gopez, A., Hsu, E., Gu, W., Miller, S., Pan, C.Y., Guevara, H., Wadford, D.A., Chen, J.S., Chiu, C.Y., 2020. CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870-874.

    4. de Lima, L.F., Ferreira, A.L., Torres, M.D.T., de Araujo, W.R., de la Fuente-Nunez, C., 2021. Minute-scale detection of SARS-CoV-2 using a low-cost biosensor composed of pencil graphite electrodes. Proc. Natl. Acad. Sci. U. S. A. 118, e2106724118.

    5. dos Santos, C., de Oliveira, K., Mendes, G., Silva, L., de Souza Jr., M., Estrela, P.F., Guimaraes, R., Silveira-Lacerda, E., Duarte, G., 2021. Detection of SARS-CoV-2 in saliva by RT-LAMP during a screening of workers in Brazil, including presymptomatic carriers. J. Braz. Chem. Soc. 32, 2071-2077.

    6. Dou, Q., Wang, S.W., Zhang, Z.F., Wang, Y.X., Zhao, Z.P., Guo, H.J., Liu, H.L., Dai, Q., 2020. A highly sensitive quartz crystal microbalance sensor modified with antifouling microgels for saliva glucose monitoring. Nanoscale 12, 19317-19324.

    7. Fabiani, L., Saroglia, M., Galata, G., De Santis, R., Fillo, S., Luca, V., Faggioni, G., D'Amore, N., Regalbuto, E., Salvatori, P., Terova, G., Moscone, D., Lista, F., Arduini, F., 2021. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19:a reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosens. Bioelectron. 171, 112686.

    8. Ferreira, A.L., de Lima, L.F., Torres, M.T., de Araujo, W.R., de la Fuente-Nunez, C., 2021.Low-cost optodiagnostic for minute-time scale detection of SARS-CoV-2. ACS Nano 15, 17453-17462.

    9. Heikenfeld, J., Jajack, A., Feldman, B., Granger, S.W., Gaitonde, S., Begtrup, G., Katchman, B.A., 2019. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407-419.

    10. Isho, B., Abe, K.T., Zuo, M., Jamal, A.J., Rathod, B., Wang, J.H., Li, Z., Chao, G., Rojas, O.L., Bang, Y.M., Pu, A., Christie-Holmes, N., Gervais, C., Ceccarelli, D., Samavarchi-Tehrani, P., Guvenc, F., Budylowski, P., Li, A., Paterson, A., Yue, F.Y., Marin, L.M., Caldwell, L., Wrana, J.L., Colwill, K., Sicheri, F., Mubareka, S., GrayOwen, S.D., Drews, S.J., Siqueira, W.L., Barrios-Rodiles, M., Ostrowski, M., Rini, J.M., Durocher, Y., McGeer, A.J., Gommerman, J.L., Gingras, A.C., 2020. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci. Immunol. 5, eabe5511.

    11. Li, Z., Yi, Y., Luo, X., Xiong, N., Liu, Y., Li, S., Sun, R., Wang, Y., Hu, B., Chen, W., Zhang, Y., Wang, J., Huang, B., Lin, Y., Yang, J., Cai, W., Wang, X., Cheng, J., Chen, Z., Sun, K., Pan, W., Zhan, Z., Chen, L., Ye, F., 2020. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 92, 1518-1524.

    12. Liu, D., Ju, C., Han, C., Shi, R., Chen, X., Duan, D., Yan, J., Yan, X., 2020. Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen. Biosens. Bioelectron. 173, 112817.

    13. Moitra, P., Alafeef, M., Dighe, K., Frieman, M.B., Pan, D., 2020. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 14, 7617-7627.

    14. Ning, B., Yu, T., Zhang, S., Huang, Z., Tian, D., Lin, Z., Niu, A., Golden, N., Hensley, K., Threeton, B., Lyon, C.J., Yin, X.M., Roy, C.J., Saba, N.S., Rappaport, J., Wei, Q., Hu, T.Y., 2021. A smartphone-read ultrasensitive and quantitative saliva test for COVID-19. Sci. Adv. 7, eabe3703.

    15. Pasomsub, E., Watcharananan, S.P., Boonyawat, K., Janchompoo, P., Wongtabtim, G., Suksuwan, W., Sungkanuparph, S., Phuphuakrat, A., 2021. Saliva sample as a noninvasive specimen for the diagnosis of coronavirus disease 2019:a cross-sectional study. Clin. Microbiol. Infect. 27, 285.e1-285.e4.

    16. Raziq, A., Kidakova, A., Boroznjak, R., Reut, J., Opik, A., Syritski, V., 2021. Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosens. Bioelectron. 178, 113029.

    17. Roda, A., Cavalera, S., Di Nardo, F., Calabria, D., Rosati, S., Simoni, P., Colitti, B., Baggiani, C., Roda, M., Anfossi, L., 2021. Dual lateral flow optical/chemiluminescence immunosensors for the rapid detection of salivary and serum IgA in patients with COVID-19 disease. Biosens. Bioelectron. 172, 112765.

    18. Seo, G., Lee, G., Kim, M.J., Baek, S.H., Choi, M., Ku, K.B., Lee, C.S., Jun, S., Park, D., Kim, H.G., Kim, S.J., Lee, J.O., Kim, B.T., Park, E.C., Kim, S.I., 2020. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 14, 5135-5142.

    19. Song, Z., Ma, Y., Chen, M., Ambrosi, A., Ding, C., Luo, X., 2021. Electrochemical biosensor with enhanced antifouling capability for COVID-19 nucleic acid detection in complex biological media. Anal. Chem. 93, 5963-5971.

    20. To, K.K., Tsang, O.T., Leung, W.S., Tam, A.R., Wu, T.C., Lung, D.C., Yip, C.C., Cai, J.P., Chan, J.M., Chik, T.S., Lau, D.P., Choi, C.Y., Chen, L.L., Chan, W.M., Chan, K.H., Ip, J.D., Ng, A.C., Poon, R.W., Luo, C.T., Cheng, V.C., Chan, J.F., Hung, I.F., Chen, Z., Chen, H., Yuen, K.Y., 2020. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2:an observational cohort study. Lancet Infect. Dis. 20, 565-574.

    21. Torres, M.D.T., de Araujo, W.R., de Lima, L.F., Ferreira, A.L., de la Fuente-Nunez, C., 2021. Low-cost biosensor for rapid detection of SARS-CoV-2 at the point of care. Matter 4, 2403-2416.

    22. Vadlamani, B.S., Uppal, T., Verma, S.C., Misra, M., 2020. Functionalized TiO2 nanotubebased electrochemical biosensor for rapid detection of SARS-CoV-2. Sensors 20, 5871.

    23. Wang, R., Wang, L., Callaway, Z.T., Lu, H., Huang, T.J., Li, Y., 2017. A nanowell-based QCM aptasensor for rapid and sensitive detection of avian influenza virus. Sensor. Actuator. B Chem. 240, 934-940.

    24. Xiang, J., Yan, M., Li, H., Liu, T., Shen, C., 2020. Evaluation of enzyme-linked immunoassay and colloidal gold-immunochromatographic assay kit for detection of novel coronavirus (SARS-Cov-2) causing an outbreak of pneumonia (COVID-19). medRxiv 2020. https://doi.org/10.1101/2020.02.27.20028787.

    25. Xu, R., Cui, B., Duan, X., Zhang, P., Zhou, X., Yuan, Q., 2020. Saliva:potential diagnostic value and transmission of 2019-nCoV. Int. J. Oral Sci. 12, 11.

    26. Yu, S., Nimse, S.B., Kim, J., Song, K.S., Kim, T., 2020. Development of a lateral flow strip membrane assay for rapid and sensitive detection of the SARS-CoV-2. Anal. Chem. 92, 14139-14144.

    27. Zhang, Y., Wang, C., Han, M., Ye, J., Gao, Y., Liu, Z., He, T., Li, T., Xu, M., Zhou, L., Zou, G., Lu, M., Zhang, Z., 2020. Discrimination of false negative results in RT-PCR detection of SARS-CoV-2 RNAs in clinical specimens by using an internal reference. Virol. Sin. 35, 758-767.

  • 加载中

Article Metrics

Article views(1234) PDF downloads(7) Cited by()

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Saliva-based point-of-care testing techniques for COVID-19 detection

      Corresponding author: Bei Yang, yangb2020@nanoctr.cn
      Corresponding author: Xi Zhou, zhouxi@wh.iov.cn
      Corresponding author: Qing Dai, daiq@nanoctr.cn
    • a CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China;
    • b Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, Tianjin, 300072, China;
    • c State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China;
    • d Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan, 430048, China;
    • e Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China

    Abstract: Highlights
    1. The advantages of COVID-19 detection in saliva were systematically introduced.
    2. Saliva-based POCT technologies for the detection of COVID-19 were reviewed.
    3. A positive correlation between COVID-19 antibodies in saliva and serum was demonstrated.

    Reference (27) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return