Citation: Chaoxiang Lv, Yuanguo Li, Tiecheng Wang, Qiqi Zhang, Jing Qi, Mingwei Sima, Entao Li, Tian Qin, Zhuangzhuang Shi, Fangxu Li, Xuefeng Wang, Weiyang Sun, Na Feng, Songtao Yang, Xianzhu Xia, Ningyi Jin, Yifa Zhou, Yuwei Gao. Taurolidine improved protection against highly pathogenetic avian influenza H5N1 virus lethal-infection in mouse model by regulating the NF-κB signaling pathway .VIROLOGICA SINICA, 2023, 38(1) : 119-127.  http://dx.doi.org/10.1016/j.virs.2022.11.010

Taurolidine improved protection against highly pathogenetic avian influenza H5N1 virus lethal-infection in mouse model by regulating the NF-κB signaling pathway

  • Taurolidine (TRD), a derivative of taurine, has anti-bacterial and anti-tumor effects by chemically reacting with cell-walls, endotoxins and exotoxins to inhibit the adhesion of microorganisms. However, its application in antiviral therapy is seldom reported. Here, we reported that TRD significantly inhibited the replication of influenza virus H5N1 in MDCK cells with the half-maximal inhibitory concentration (EC50) of 34.45 ​μg/mL. Furthermore, the drug inhibited the amplification of the cytokine storm effect and improved the survival rate of mice lethal challenged with H5N1 (protection rate was 86%). Moreover, TRD attenuated virus-induced lung damage and reduced virus titers in mice lungs. Administration of TRD reduced the number of neutrophils and increased the number of lymphocytes in the blood of H5N1 virus-infected mice. Importantly, the drug regulated the NF-κB signaling pathway by inhibiting the separation of NF-κB and IκBa, thereby reducing the expression of inflammatory factors. In conclusion, our findings suggested that TRD could act as a potential anti-influenza drug candidate in further clinical studies.

  • 加载中
  • 10.1016j.virs.2022.11.010-ESM.docx
    1. Arweiler, N.B., Auschill, T.M., Sculean, A., 2012. Antibacterial effect of taurolidine (2%) on established dental plaque biofilm. Clin Oral Investig 16:499-504. https://doi:10.1007/s00784-011-0526-y.

    2. Bai, Y., Lian, P., Li, J., Zhang, Z., Qiao, J., 2021. The active GLP-1 analogue liraglutide alleviates H9N2 influenza virus-induced acute lung injury in mice. Microb Pathog 150:104645. https://doi:10.1016/j.micpath.2020.104645.

    3. Bakogiannis, C., Sachse, M., Stamatelopoulos, K., Stellos, K., 2019. Platelet-derived chemokines in inflammation and atherosclerosis. Cytokine 122:154157. https://doi:10.1016/j.cyto.2017.09.013.

    4. Bedrosian, I., Sofia, R.D., Wolff, S.M., Dinarello, C.A., 1991. Taurolidine, an analogue of the amino acid taurine, suppresses interleukin 1 and tumor necrosis factor synthesis in human peripheral blood mononuclear cells. Cytokine 3:568-575. https://doi:10.1016/1043-4666(91)90483-t.

    5. Bergmann, S., Elbahesh, H., 2019. Targeting the proviral host kinase, FAK, limits influenza a virus pathogenesis and NFkB-regulated pro-inflammatory responses. Virology 534:54-63. https://doi:10.1016/j.virol.2019.05.020.

    6. Betakova, T., Kostrabova, A., Lachova, V., Turianova, L., 2017. Cytokines Induced During Influenza Virus Infection. Curr Pharm Des 23:2616-2622. https://doi:10.2174/1381612823666170316123736.

    7. Braumann, C., Gutt, C.N., Scheele, J., Menenakos, C., Willems, W., Mueller, J.M., Jacobi, C.A., 2009. Taurolidine reduces the tumor stimulating cytokine interleukin-1beta in patients with resectable gastrointestinal cancer:a multicentre prospective randomized trial. World J Surg Oncol 7:32. https://doi:10.1186/1477-7819-7-32.

    8. Cole, S.L., Ho, L.P., 2017. Contribution of innate immune cells to pathogenesis of severe influenza virus infection. Clin Sci (Lond) 131:269-283. https://doi:10.1042/CS20160484.

    9. DiDonato, J.A., Mercurio, F., Karin, M., 2012. NF-κB and the link between inflammation and cancer. Immunol Rev 246:379-400. https://doi:10.1111/j.1600-065X.2012.01099.x.

    10. Doddakula, K.K., Neary, P.M., Wang, J.H., Sookhai, S., O'Donnell, A., Aherne, T., Bouchier-Hayes, D.J., Redmond, H.P., 2010. The antiendotoxin agent taurolidine potentially reduces ischemia/reperfusion injury through its metabolite taurine. Surgery 148:567-572. https://doi:10.1016/j.surg.2010.01.006.

    11. García-Ramírez, R.A., Ramírez-Venegas, A., Quintana-Carrillo, R., Camarena, Á.E., Falfán-Valencia, R., Mejía-Aranguré, J.M., 2015. TNF, IL-6, and IL-1β Polymorphisms Are Associated with Severe Influenza A (H1N1) Virus Infection in the Mexican Population. PLoS One 10:e0144832. https://doi:10.1371/journal.pone.0144832.

    12. Gu, Y., Hsu, A.C., Pang, Z., Pan, H., Zuo, X., Wang, G., Zheng, J., Wang, F., 2019. Role of the Innate Cytokine Storm Induced by the Influenza A Virus. Viral Immunol 32:244-251. https://doi:10.1089/vim.2019.0032.

    13. Haasbach, E., Müller, C., Ehrhardt, C., Schreiber, A., Pleschka, S., Ludwig, S., Planz, O., 2017. The MEK-inhibitor CI-1040 displays a broad anti-influenza virus activity in vitro and provides a prolonged treatment window compared to standard of care in vivo. Antiviral Res 142:178-184. https://doi:10.1016/j.antiviral.2017.03.024.

    14. Haro, C., 2019. Taurolidina, un antiséptico para la prevención de infeccionesasociadas a catétervenoso central [Taurolidine, an antiseptic for the prevention of central venous catheter-related infections]. Rev ChilenaInfectol 36:414-420. https://doi:10.4067/S0716-10182019000400414.

    15. Hutchinson, E.C., 2018. Influenza Virus. Trends Microbiol 26:809-810. https://doi:10.1016/j.tim.2018.05.013.

    16. Jacobi, C.A., Menenakos, C., Braumann, C., 2005. Taurolidine--a new drug with anti-tumor and anti-angiogenic effects. Anticancer Drugs 16:917-921. https://doi:10.1097/01.cad.0000176502.

    17. Kain, T., Fowler, R., 2019. Preparing intensive care for the next pandemic influenza. Crit Care 23:337. https://doi:10.1186/s13054-019-2616-1.

    18. König, R., Stertz, S., Zhou, Y., Inoue, A., Hoffmann, H.H., Bhattacharyya, S., Alamares, J.G., Tscherne, D.M., Ortigoza, M.B., Liang, Y., Gao, Q., Andrews, S.E., Bandyopadhyay, S., Jesus. P., Tu, B.P., Pache, L., Shih, C., Orth, A., Bonamy, G., Miraglia, L., Ideker, T., García-Sastre, A., Young, J.A., Palese, P., Shaw, M.L., Chanda, S.K. 2010. Human host factors required for influenza virus replication. Nature 463:813-817. https://doi:10.1038/nature08699.

    19. Lawrence, T., 2009. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1:a001651. https://doi:10.1101/cshperspect.a001651.

    20. Lee, H.K., Tang, J.W. 2015. Extended full-genome phylogenetic analysis of the first human A/H5N1 avian influenza case in North America. Infect Genet Evol 32:327-329. https://doi:10.1016/j.meegid.2015.03.023

    21. Lewis, N.S., Banyard, A.C., Whittard, E., Karibayev, T., Kafagi, T., Chvala. I., Byrne, A., Akberovna, S., King, J., Harder, T., Grund, C., Essen, S., Reid, S.M., Brouwer, A., Zinyakov, N.G., Tegzhanov, A., Irza, V., Pohlmann, A., Beer, M., Fouchier, R.A.M., Akievich, S., Brown, I.H., 2021. Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020. Emerg Microbes Infect 10:148-151. https://doi:10.1080/22221751.2021.

    22. Li, J., Jie, X., Liang, X., Chen, Z., Xie, P., Pan, X., Zhou, B., Li, J., 2020. Sinensetin suppresses influenza a virus-triggered inflammation through inhibition of NF-κB and MAPKs signalings. BMC Complement Med Ther 20:135. https://doi:10.1186/s12906-020-02918-3.

    23. Liu, T., Zhang, L., Joo, D., Sun, S.C., 2017. NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi:10.1101/cshperspect.a001651.

    24. Ma, Q., Huang, W., Zhao, J., Yang, Z., 2020. Liu Shen Wan inhibits influenza a virus and excessive virus-induced inflammatory response via suppression of TLR4/NF-κB signaling pathway in vitro and in vivo. J Ethnopharmacol 252:112584. https://doi:10.1016/j.jep.2020.112584.

    25. Mehrbod, P., Abdalla, M.A., Fotouhi, F., Heidarzadeh, M., Aro, A.O., Eloff, J.N., McGaw, L.J., Fasina, F.O., 2018. Immunomodulatory properties of quercetin-3-O-α-L-rhamnopyranoside from Rapanea melanophloeos against influenza a virus. BMC Complement Altern Med 18:184. https://doi:10.1186/s12906-018-2246-1.

    26. Morales-García, G., Falfán-Valencia, R., García-Ramírez, R.A., Camarena, Á., Ramirez-Venegas, A., Castillejos-López, M., Pérez-Rodríguez, M., González-Bonilla, C., Grajales-Muñíz, C., Borja-Aburto, V., Mejía-Aranguré, J.M., 2012. Pandemic influenza A/H1N1 virus infection and TNF, LTA, IL1B, IL-6, IL8, and CCL polymorphisms in Mexican population:a case-control study. BMC Infect Dis 12:299. https://doi:10.1186/1471-2334-12-299.

    27. Mulero, M.C., Huxford, T., Ghosh, G., 2019. NF-κB, IκB, and IKK:Integral Components of Immune System Signaling. Adv Exp Med Biol 1172:207-226. https://doi:10.1007/978-981-13-9367-9_10.

    28. Nanki, T., 2016. [Treatment for rheumatoid arthritis by chemokine blockade]. Nihon RinshoMeneki Gakkai Kaishi 39:172-180. https://doi:10.2177/jsci.39.172.

    29. Neary, P.M., Hallihan, P., Wang, J.H., Pfirrmann, R.W., Bouchier-Hayes, D.J., Redmond, H.P., 2014. The evolving role of taurolidine in cancer therapy. Ann Surg Oncol 17:1135-1143. https://doi:10.1245/s10434-009-0867-9.

    30. Pleschka, S., 2013. Overview of influenza viruses. Curr Top Microbiol Immunol 370:1-20. https://doi:10.1007/82_2012_272.

    31. Sun, H., Yao, W., Wang, K., Qian, Y., Chen, H., Jung, Y.S., 2018. Inhibition of neddylation pathway represses influenza virus replication and pro-inflammatory responses. Virology 514:230-239. https://doi:10.1016/j.virol.2017.11.004.

    32. Sutton, T.C., 2018. The Pandemic Threat of Emerging H5 and H7 Avian Influenza Viruses. Viruses 10:461. https://doi:10.3390/v10090461.

    33. Taubenberger, J.K., Kash, J.C., 2010. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 7:440-451. https://doi:10.1016/j.chom.2010.05.009.

    34. Teijaro, J.R., Walsh, K.B., Cahalan, S., Fremgen, D.M., Roberts, E., Scott, F., Martinborough, E., Peach, R., Oldstone, M.B., Rosen, H., 2011. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146:980-991. https://doi:10.1016/j.cell.2011.08.015.

    35. Teijaro, J.R., Walsh, K.B., Rice, S., Rosen, H., Oldstone, M.B., 2014. Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection. Proc Natl Acad Sci U S A 111:3799-3804. https://doi:10.1073/pnas.1400593111.

    36. Tian, H., Zhou, S., Dong, L., Boeckel, T.P., Cui, Y., Newman, S.H., Takekawa, J.Y., Prosser, D.J., Xiao, X., Wu, Y., Cazelles, B., Huang, S., Yang, R., Grenfell, B.T., Xu, B., 2015. Avian influenza H5N1 viral and bird migration networks in Asia. Proc Natl Acad Sci U S A 112:172-177. https://doi:10.1073/pnas.1405216112.

    37. Viboud, C., Simonsen, L., Fuentes, R., Flores, J., Miller, M.A., Chowell, G., 2016. Global Mortality Impact of the 1957-1959 Influenza Pandemic. J Infect Dis 213:738-745. https://doi:10.1093/infdis/jiv534.

    38. Wang, W., Ye, L., Ye, L., Li, B., Gao, B., Zeng, Y., Kong, L., Fang, X., Zheng, H., Wu, Z., She, Y., 2007. Up-regulation of IL-6 and TNF-alpha induced by SARS-coronavirus spike protein in murine macrophages via NF-kappaB pathway. Virus Res 128:1-8. https://doi:10.1016/j.virusres.2007.02.007.

    39. Xue, Q., Liu, H., Zhu, Z., Yang, F., Ma, L., Cai, X., Xue, Q., Zheng, H., 2018. Seneca Valley Virus 3Cpro abrogates the IRF3- and IRF7-mediated innate immune response by degrading IRF3 and IRF7. Virology 518:1-7.

  • 加载中

Article Metrics

Article views(2653) PDF downloads(14) Cited by()

Related
Proportional views

    Taurolidine improved protection against highly pathogenetic avian influenza H5N1 virus lethal-infection in mouse model by regulating the NF-κB signaling pathway

      Corresponding author: Ningyi Jin, ningyik@126.com
      Corresponding author: Yifa Zhou, zhouyf383@nenu.edu.cn
      Corresponding author: Yuwei Gao, gaoyuwei@gmail.com
    • a. College of Life Sciences, Northeast Normal University, Changchun, Jilin, 130021, China;
    • b. Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China;
    • c. College of Animal Medicine, Jilin University, Changchun, 130000, China;
    • d. College of Basic Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China;
    • e. College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130033, China;
    • f. College of Life Sciences, Shandong Normal University, Jinan, 250014, China

    Abstract: Taurolidine (TRD), a derivative of taurine, has anti-bacterial and anti-tumor effects by chemically reacting with cell-walls, endotoxins and exotoxins to inhibit the adhesion of microorganisms. However, its application in antiviral therapy is seldom reported. Here, we reported that TRD significantly inhibited the replication of influenza virus H5N1 in MDCK cells with the half-maximal inhibitory concentration (EC50) of 34.45 ​μg/mL. Furthermore, the drug inhibited the amplification of the cytokine storm effect and improved the survival rate of mice lethal challenged with H5N1 (protection rate was 86%). Moreover, TRD attenuated virus-induced lung damage and reduced virus titers in mice lungs. Administration of TRD reduced the number of neutrophils and increased the number of lymphocytes in the blood of H5N1 virus-infected mice. Importantly, the drug regulated the NF-κB signaling pathway by inhibiting the separation of NF-κB and IκBa, thereby reducing the expression of inflammatory factors. In conclusion, our findings suggested that TRD could act as a potential anti-influenza drug candidate in further clinical studies.

    Reference (39) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return