Citation: Xiao Ding, Jingze Liu, Taijiao Jiang, Aiping Wu. Transmission restriction and genomic evolution co-shape the genetic diversity patterns of influenza A virus .VIROLOGICA SINICA, 2024, 39(4) : 525-536.  http://dx.doi.org/10.1016/j.virs.2024.02.005

Transmission restriction and genomic evolution co-shape the genetic diversity patterns of influenza A virus

cstr: 32224.14.j.virs.2024.02.005
  • Influenza A virus (IAV) shows an extensive host range and rapid genomic variations, leading to continuous emergence of novel viruses with significant antigenic variations and the potential for cross-species transmission. This causes global pandemics and seasonal flu outbreaks, posing sustained threats worldwide. Thus, studying all IAVs' evolutionary patterns and underlying mechanisms is crucial for effective prevention and control. We developed FluTyping to identify IAV genotypes, to explore overall genetic diversity patterns and their restriction factors. FluTyping groups isolates based on genetic distance and phylogenetic relationships using whole genomes, enabling identification of each isolate's genotype. Three distinct genetic diversity patterns were observed: one genotype domination pattern comprising only H1N1 and H3N2 seasonal influenza subtypes, multi-genotypes co-circulation pattern including majority avian influenza subtypes and swine influenza H1N2, and hybrid-circulation pattern involving H7N9 and three H5 subtypes of influenza viruses. Furthermore, the IAVs in multi-genotypes co-circulation pattern showed region-specific dominant genotypes, implying the restriction of virus transmission is a key factor contributing to distinct genetic diversity patterns, and the genomic evolution underlying different patterns was more influenced by host-specific factors. In summary, a comprehensive picture of the evolutionary patterns of overall IAVs is provided by the FluTyping's identified genotypes, offering important theoretical foundations for future prevention and control of these viruses.

  • 加载中
  • 10.1016j.virs.2024.02.005-ESM.docx
    1. Ali, S.T., Cowling, B.J., 2021. Influenza virus: tracking, predicting, and forecasting. Annu. Rev. Publ. Health 42, 43-57. https://doi.org/10.1146/annurev-publhealth-010720-021049.

    2. Barrat-Charlaix, P., Huddleston, J., Bedford, T., Neher, R.A., 2021. Limited predictability of amino acid substitutions in seasonal influenza viruses. Mol. Biol. Evol. 38, 2767-2777. https://doi.org/10.1093/molbev/msab065.

    3. Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W., 2013. GenBank. Nucleic Acids Res. 41, D36-D42. https://doi.org/10.1093/nar/gks1195.

    4. Borkenhagen, L.K., Allen, M.W., Runstadler, J.A., 2021. Influenza virus genotype to phenotype predictions through machine learning: a systematic review. Emerg. Microb. Infect. 10, 1896-1907. https://doi.org/10.1080/22221751.2021.1978824.

    5. Carter, D.M., Darby, C.A., Lefoley, B.C., Crevar, C.J., Alefantis, T., Oomen, R., Anderson, S.F., Strugnell, T., Cortes-Garcia, G., Vogel, T.U., Parrington, M., Kleanthous, H., Ross, T.M., 2016. Design and characterization of a computationally optimized broadly reactive hemagglutinin vaccine for H1N1 influenza viruses. J. Virol. 90, 4720-4734. https://doi.org/10.1128/JVI.03152-15.

    6. Ciminski, K., Chase, G.P., Beer, M., Schwemmle, M., 2021. Influenza A viruses: understanding human host determinants. Trends Mol. Med. 27, 104-112. https://doi.org/10.1016/j.molmed.2020.09.014.

    7. Ding, X., Yuan, X., Mao, L., Wu, A., Jiang, T., 2020. FluReassort: a database for the study of genomic reassortments among influenza viruses. Briefings Bioinf. 21, 2126-2132. https://doi.org/10.1093/bib/bbz128.

    8. Ding, X., Qin, L., Meng, J., Peng, Y., Wu, A., Jiang, T., 2021. Progress and challenge in computational identification of influenza virus reassortment. Virol. Sin. 36, 1273-1283. https://doi.org/10.1007/s12250-021-00392-w.

    9. Dong, Z.-L., Gao, G.F., Lyu, F., 2020. Advances in research of HIV transmission networks. Chinese Med J 133, 2850-2858. https://doi.org/10.1097/CM9.0000000000001155.

    10. Du Toit, A., 2023. Avian influenza takes flight in humans by evading restriction. Nat. Rev. Microbiol. 1-1. https://doi.org/10.1038/s41579-023-00943-w.

    11. Elbe, S., Buckland-Merrett, G., 2017. Data, disease and diplomacy: GISAID's innovative contribution to global health. Global Challenges 1, 33-46. https://doi.org/10.1002/gch2.1018.

    12. Ganti, K., Bagga, A., Carnaccini, S., Ferreri, L.M., Geiger, G., Joaquin Caceres, C., Seibert, B., Li, Yonghai, Wang, L., Kwon, T., Li, Yuhao, Morozov, I., Ma, W., Richt, J.A., Perez, D.R., Koelle, K., Lowen, A.C., 2022. Influenza A virus reassortment in mammals gives rise to genetically distinct within-host subpopulations. Nat. Commun. 13, 6846. https://doi.org/10.1038/s41467-022-34611-z.

    13. Gao, R., Cao, B., Hu, Y., Feng, Z., Wang, D., Hu, W., Chen, J., Jie, Z., Qiu, H., Xu, K., Xu, X., Lu, H., Zhu, W., Gao, Z., Xiang, N., Shen, Y., He, Z., Gu, Y., Zhang, Z., Yang, Y., Zhao, X., Zhou, L., Li, Xiaodan, Zou, S., Zhang, Ye, Li, Xiyan, Yang, L., Guo, J., Dong, J., Li, Q., Dong, L., Zhu, Y., Bai, T., Wang, S., Hao, P., Yang, W., Zhang, Yanping, Han, J., Yu, H., Li, D., Gao, G.F., Wu, G., Wang, Y., Yuan, Z., Shu, Y., 2013. Human infection with a novel avian-origin influenza A (H7N9) virus. N. Engl. J. Med. 368, 1888-1897. https://doi.org/10.1056/NEJMoa1304459.

    14. Hadfield, J., Megill, C., Bell, S.M., Huddleston, J., Potter, B., Callender, C., Sagulenko, P., Bedford, T., Neher, R.A., 2018. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 4121-4123. https://doi.org/10.1093/bioinformatics/bty407.

    15. Han, Alvin X, Parker, E., Maurer-Stroh, S., Russell, C.A., 2019a. Inferring putative transmission clusters with Phydelity. Virus Evol 5, vez039. https://doi.org/10.1093/ve/vez039.

    16. Han, Alvin X., Parker, E., Scholer, F., Maurer-Stroh, S., Russell, C.A., 2019b. Phylogenetic clustering by linear integer programming (PhyCLIP). Mol. Biol. Evol. 36, 1580-1595. https://doi.org/10.1093/molbev/msz053.

    17. Ji, C., Han, N., Cheng, Y., Shang, J., Weng, S., Yang, R., Zhou, H.-Y., Wu, A., 2022. sitePath: a visual tool to identify polymorphism clades and help find fixed and parallel mutations. BMC Bioinf. 23, 504. https://doi.org/10.1186/s12859-022-05064-4.

    18. Katoh, K., Misawa, K., Kuma, K., Miyata, T., 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059-3066.

    19. Krammer, F., Smith, G.J.D., Fouchier, R.A.M., Peiris, M., Kedzierska, K., Doherty, P.C., Palese, P., Shaw, M.L., Treanor, J., Webster, R.G., Garcia-Sastre, A., 2018. Influenza. Nat. Rev. Dis. Prim. 4, 3. https://doi.org/10.1038/s41572-018-0002-y.

    20. Li, W., Godzik, A., 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658-1659. https://doi.org/10.1093/bioinformatics/btl158.

    21. Long, J.S., Mistry, B., Haslam, S.M., Barclay, W.S., 2019. Host and viral determinants of influenza A virus species specificity. Nat. Rev. Microbiol. 17, 67-81. https://doi.org/10.1038/s41579-018-0115-z.

    22. Medina, R.A., Garcia-Sastre, A., 2011. Influenza A viruses: new research developments. Nat. Rev. Microbiol. 9, 590-603. https://doi.org/10.1038/nrmicro2613.

    23. Muller, N.F., Stolz, U., Dudas, G., Stadler, T., Vaughan, T.G., 2020. Bayesian inference of reassortment networks reveals fitness benefits of reassortment in human influenza viruses. Proc. Natl. Acad. Sci. USA 117, 17104-17111. https://doi.org/10.1073/pnas.1918304117.

    24. Naguib, M.M., Verhagen, J.H., Mostafa, A., Wille, M., Li, R., Graaf, A., Jarhult, J.D., Ellstrom, P., Zohari, S., Lundkvist, A., Olsen, B., 2019. Global patterns of avian influenza A (H7): virus evolution and zoonotic threats. FEMS Microbiol. Rev. 43, 608-621. https://doi.org/10.1093/femsre/fuz019.

    25. Patrono, L.V., Vrancken, B., Budt, M., Dux, A., Lequime, S., Boral, S., Gilbert, M.T.P., Gogarten, J.F., Hoffmann, L., Horst, D., Merkel, K., Morens, D., Prepoint, B., Schlotterbeck, J., Schuenemann, V.J., Suchard, M.A., Taubenberger, J.K., Tenkhoff, L., Urban, C., Widulin, N., Winter, E., Worobey, M., Schnalke, T., Wolff, T., Lemey, P., Calvignac-Spencer, S., 2022. Archival influenza virus genomes from Europe reveal genomic variability during the 1918 pandemic. Nat. Commun. 13, 2314. https://doi.org/10.1038/s41467-022-29614-9.

    26. Pineo, R., 2021. Four flu pandemics: lessons that need to Be learned. J. Develop. Soc. 37, 398-448. https://doi.org/10.1177/0169796X211047221.

    27. Ping, X., Hu, W., Xiong, R., Zhang, X., Teng, Z., Ding, M., Li, L., Chang, C., Xu, K., 2018. Generation of a broadly reactive influenza H1 antigen using a consensus HA sequence. Vaccine 36, 4837-4845. https://doi.org/10.1016/j.vaccine.2018.06.048.

    28. Poon, A.F.Y., 2016. Impacts and shortcomings of genetic clustering methods for infectious disease outbreaks. Virus Evolution 2, vew031. https://doi.org/10.1093/ve/vew031.

    29. Price, M.N., Dehal, P.S., Arkin, A.P., 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641-1650. https://doi.org/10.1093/molbev/msp077.

    30. Prosperi, M.C.F., Ciccozzi, M., Fanti, I., Saladini, F., Pecorari, M., Borghi, V., Di Giambenedetto, S., Bruzzone, B., Capetti, A., Vivarelli, A., Rusconi, S., Re, M.C., Gismondo, M.R., Sighinolfi, L., Gray, R.R., Salemi, M., Zazzi, M., De Luca, A., on behalf of the ARCA collaborative group, 2011. A novel methodology for large-scale phylogeny partition. Nat. Commun. 2, 321. https://doi.org/10.1038/ncomms1325.

    31. Ragonnet-Cronin, M., Hodcroft, E., Hue, S., Fearnhill, E., Delpech, V., Brown, A.J.L., Lycett, S., 2013. Automated analysis of phylogenetic clusters. BMC Bioinf. 14, 317. https://doi.org/10.1186/1471-2105-14-317.

    32. Scrucca, L., Fop, M., Murphy, T.B., Raftery, A.E., 2016. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J 8, 289-317.

    33. Shi, J., Deng, G., Ma, S., Zeng, X., Yin, X., Li, M., Zhang, B., Cui, P., Chen, Y., Yang, H., Wan, X., Liu, L., Chen, P., Jiang, Y., Guan, Y., Liu, J., Gu, W., Han, S., Song, Y., Liang, L., Qu, Z., Hou, Y., Wang, X., Bao, H., Tian, G., Li, Y., Jiang, L., Li, C., Chen, H., 2018. Rapid evolution of H7N9 highly pathogenic viruses that emerged in China in 2017. Cell Host Microbe 24, 558-568.e7. https://doi.org/10.1016/j.chom.2018.08.006.

    34. Smith, G.J.D., Donis, R.O., World Health Organization/World Organisation for Animal Health/Food and Agriculture Organization (WHO/OIE/FAO) H5 Evolution Working Group, 2015. Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013-2014. Influenza Other Respir Viruses 9, 271-276. https://doi.org/10.1111/irv.12324.

    35. Tan, M., Long, H., Liao, B., Cao, Z., Yuan, D., Tian, G., Zhuang, J., Yang, J., 2019. QS-Net: reconstructing phylogenetic networks based on quartet and sextet. Front. Genet. 10, 607. https://doi.org/10.3389/fgene.2019.00607.

    36. Waters, K., Gao, C., Ykema, M., Han, L., Voth, L., Tao, Y.J., Wan, X.-F., 2021. Triple reassortment increases compatibility among viral ribonucleoprotein genes of contemporary avian and human influenza A viruses. PLoS Pathog. 17, e1009962. https://doi.org/10.1371/journal.ppat.1009962.

    37. WHO Working Group, 2023. Influenza (Seasonal). https://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal)/(accessed 15 July 2023).

    38. WHO/OIE/FAO H5N1 Evolution Working Group, 2009. Continuing progress towards a unified nomenclature for the highly pathogenic H5N1 avian influenza viruses: divergence of clade 2.2 viruses. Influenza Other Respir Viruses 3, 59-62. https://doi.org/10.1111/j.1750-2659.2009.00078.x.

    39. WHO/OIE/FAO H5N1 Evolution Working Group, 2012. Continued evolution of highly pathogenic avian influenza A (H5N1): updated nomenclature. Influenza Other Respir Viruses 6, 1-5. https://doi.org/10.1111/j.1750-2659.2011.00298.x.

    40. Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98141-3.

    41. World Health Organization/World Organisation for Animal Health/Food and Agriculture Organization (WHO/OIE/FAO) H5N1 Evolution Working Group, 2014. Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) viruses. Influenza Other Respir Viruses 8, 384-388. https://doi.org/10.1111/irv.12230.

    42. Wu, A., Su, C., Wang, D., Peng, Y., Liu, M., Hua, S., Li, T., Gao, G.F., Tang, H., Chen, J., Liu, X., Shu, Y., Peng, D., Jiang, T., 2013. Sequential reassortments underlie diverse influenza H7N9 genotypes in China. Cell Host Microbe 14, 446-452. https://doi.org/10.1016/j.chom.2013.09.001.

    43. Yamayoshi, S., Kawaoka, Y., 2019. Current and future influenza vaccines. Nat. Med. 25, 212-220. https://doi.org/10.1038/s41591-018-0340-z.

    44. Yang, H., Dong, Y., Bian, Y., Xu, N., Wu, Y., Yang, F., Du, Y., Qin, T., Chen, S., Peng, D., Liu, X., 2022. The influenza virus PB2 protein evades antiviral innate immunity by inhibiting JAK1/STAT signalling. Nat. Commun. 13, 6288. https://doi.org/10.1038/s41467-022-33909-2.

    45. Yu, G., Smith, D.K., Zhu, H., Guan, Y., Lam, T.T.-Y., 2017. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28-36. https://doi.org/10.1111/2041-210X.12628.

    46. Zaraket, H., Baranovich, T., Kaplan, B.S., Carter, R., Song, M.-S., Paulson, J.C., Rehg, J.E., Bahl, J., Crumpton, J.C., Seiler, J., Edmonson, M., Wu, G., Karlsson, E., Fabrizio, T., Zhu, H., Guan, Y., Husain, M., Schultz-Cherry, S., Krauss, S., McBride, R., Webster, R.G., Govorkova, E.A., Zhang, J., Russell, C.J., Webby, R.J., 2015. Mammalian adaptation of influenza A(H7N9) virus is limited by a narrow genetic bottleneck. Nat. Commun. 6, 6553. https://doi.org/10.1038/ncomms7553.

    47. Zhang, Z., 2022. KaKs_Calculator 3.0: calculating selective pressure on coding and non-coding sequences. Dev. Reprod. Biol. 20, 536-540. https://doi.org/10.1016/j.gpb.2021.12.002.

  • 加载中

Article Metrics

Article views(1162) PDF downloads(32) Cited by()

Related
Proportional views

    Transmission restriction and genomic evolution co-shape the genetic diversity patterns of influenza A virus

      Corresponding author: Taijiao Jiang, taijiao@ibms.pumc.edu.cn
      Corresponding author: Aiping Wu, wap@ism.cams.cn
    • a. State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, China;
    • b. Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, 100730, China;
    • c. Guangzhou National Laboratory, Guangzhou, 510006, China;
    • d. State Key Laboratory of Respiratory Disease, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510030, China

    Abstract: Influenza A virus (IAV) shows an extensive host range and rapid genomic variations, leading to continuous emergence of novel viruses with significant antigenic variations and the potential for cross-species transmission. This causes global pandemics and seasonal flu outbreaks, posing sustained threats worldwide. Thus, studying all IAVs' evolutionary patterns and underlying mechanisms is crucial for effective prevention and control. We developed FluTyping to identify IAV genotypes, to explore overall genetic diversity patterns and their restriction factors. FluTyping groups isolates based on genetic distance and phylogenetic relationships using whole genomes, enabling identification of each isolate's genotype. Three distinct genetic diversity patterns were observed: one genotype domination pattern comprising only H1N1 and H3N2 seasonal influenza subtypes, multi-genotypes co-circulation pattern including majority avian influenza subtypes and swine influenza H1N2, and hybrid-circulation pattern involving H7N9 and three H5 subtypes of influenza viruses. Furthermore, the IAVs in multi-genotypes co-circulation pattern showed region-specific dominant genotypes, implying the restriction of virus transmission is a key factor contributing to distinct genetic diversity patterns, and the genomic evolution underlying different patterns was more influenced by host-specific factors. In summary, a comprehensive picture of the evolutionary patterns of overall IAVs is provided by the FluTyping's identified genotypes, offering important theoretical foundations for future prevention and control of these viruses.

    Reference (47) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return