Citation: Kattareeya Kumthip, Pattara Khamrin, Aksara Thongprachum, Rungnapa Malasao, Arpaporn Yodmeeklin, Hiroshi Ushijima, Niwat Maneekarn. Diverse genotypes of norovirus genogroup I and II contamination in environmental water in Thailand during the COVID-19 outbreak from 2020 to 2022 .VIROLOGICA SINICA, 2024, 39(4) : 556-564.  http://dx.doi.org/10.1016/j.virs.2024.05.010

Diverse genotypes of norovirus genogroup I and II contamination in environmental water in Thailand during the COVID-19 outbreak from 2020 to 2022

cstr: 32224.14.j.virs.2024.05.010
  • Corresponding author: Niwat Maneekarn, niwat.m@cmu.ac.th
  • Received Date: 18 December 2023
    Accepted Date: 28 May 2024
    Available online: 30 May 2024
  • Noroviruses (NoVs) are the most significant viral pathogens associated with waterborne and foodborne outbreaks of nonbacterial acute gastroenteritis in humans worldwide. This study aimed to investigate the prevalence and diversity of NoVs contaminated in the environmental water in Chiang Mai, Thailand. A total of 600 environmental water samples were collected from ten sampling sites in Chiang Mai from July 2020 to December 2022. The presence of NoV genogroups I (GI), GII, and GIV were examined using real-time RT-PCR assay. The genotype of the virus was determined by nucleotide sequencing and phylogenetic analysis. The results showed that NoV GI and GII were detected at 8.5% (51/600) and 11.7% (70/600) of the samples tested, respectively. However, NoV GIV was not detected in this study. NoV circulated throughout the year, with a higher detection rate during the winter season. Six NoV GI genotypes (GI.1-GI.6) and eight NoV GII genotypes (GII.2, GII.3, GII.7, GII.8, GII.10, GII.13, GII.17, and GII.21) were identified. Among 121 NoV strains detected, GII.17 was the most predominant genotype (24.8%, 30 strains), followed by GII.2 (21.5%, 26 strains), GI.3 (17.4%, 21 strains), and GI.4 (16.5%, 20 strains). Notably, NoV GII.3, GII.7, GII.8, and GII.10 were detected for the first time in water samples in this area. This study provides insight into the occurrence and seasonal pattern of NoV along with novel findings of NoV strains in environmental water in Thailand during the COVID-19 outbreak. Our findings emphasize the importance of further surveillance studies to monitor viral contamination in environmental water.

  • 加载中
  • 10.1016j.virs.2024.05.010-ESM.docx
    1. Boonchan, M., Motomura, K., Inoue, K., Ode, H., Chu, P. Y., Lin, M., Iwatani, Y., Ruchusatsawat, K., Guntapong, R., Tacharoenmuang, R., Chantaroj, S., Tatsumi, M., Takeda, N., Sangkitporn, S., 2017. Distribution of norovirus genotypes and subtypes in river water by ultra-deep sequencing-based analysis. Lett. Appl. Microbiol. 65, 98-104.

    2. Cannon, J. L., Barclay, L., Collins, N. R., Wikswo, M. E., Castro, C. J., Magana, L. C., Gregoricus, N., Marine, R. L., Chhabra, P., Vinje, J., 2017. Genetic and epidemiologic trends of norovirus outbreaks in the United States from 2013 to 2016 demonstrated emergence of novel GII.4 recombinant viruses. J. Clin. Microbiol. 55, 2208-2221.

    3. Chhabra, P., de Graaf, M., Parra, G. I., Chan, M. C., Green, K., Martella, V., Wang, Q., White, P. A., Katayama, K., Vennema, H., Koopmans, M. P. G., Vinje, J., 2019. Updated classification of norovirus genogroups and genotypes. J. Gen. Virol. 100, 1393-1406.

    4. da Silva, A. K., Le Saux, J. C., Parnaudeau, S., Pommepuy, M., Elimelech, M., Le Guyader, F. S., 2007. Evaluation of removal of noroviruses during wastewater treatment, using real-time reverse transcription-PCR: different behaviors of genogroups I and II. Appl. Environ. Microbiol. 73, 7891-7897.

    5. Douglas, A., Sandmann, F. G., Allen, D. J., Celma, C. C., Beard, S., Larkin, L., 2021. Impact of COVID-19 on national surveillance of norovirus in England and potential risk of increased disease activity in 2021. J. Hosp. Infect. 112, 124-126.

    6. Farahmand, M., Moghoofei, M., Dorost, A., Shoja, Z., Ghorbani, S., Kiani, S. J., Khales, P., Esteghamati, A., Sayyahfar, S., Jafarzadeh, M. et al., 2022. Global prevalence and genotype distribution of norovirus infection in children with gastroenteritis: A meta-analysis on 6 years of research from 2015 to 2020. Rev. Med. Virol. 32, e2237.

    7. Haramoto, E., Katayama, H., Oguma, K., Yamashita, H., Tajima, A., Nakajima, H., Ohgaki, S., 2006. Seasonal profiles of human noroviruses and indicator bacteria in a wastewater treatment plant in Tokyo, Japan. Water. Sci. Technol. 54, 301-308.

    8. Hoque, S. A., Kotaki, T., Pham, N. T. K., Onda, Y., Okitsu, S., Sato, S., Yuki, Y., Kobayashi, T., Maneekarn, N., Kiyono, H., Hayakawa, S., Ushijima, H., 2023a. Abundance of viral gastroenteritis before and after the emergence of COVID-19: molecular evidence on wastewater. J. Infect. 86, 154-225.

    9. Hoque, S. A., Kotaki, T., Pham, N. T. K., Onda, Y., Okitsu, S., Sato, S., Yuki, Y., Kobayashi, T., Maneekarn, N., Kiyono, H., Hayakawa, S., Ushijima, H., 2023b. Genotype diversity of enteric viruses in wastewater amid the COVID-19 pandemic. Food. Environ. Virol. 15, 176-191.

    10. Inoue, K., Motomura, K., Boonchan, M., Takeda, N., Ruchusatsawa, K., Guntapong, R., Tacharoenmuang, R., Sangkitporn, S., Chantaroj, S., 2016. Molecular detection and characterization of noroviruses in river water in Thailand. Lett. Appl. Microbiol. 62, 243-249.

    11. Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B., Takeda, N., Katayama, K., 2003. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J. Clin. Microbiol. 41, 1548-1557.

    12. Khamrin, P., Kumthip, K., Supadej, K., Thongprachum, A., Okitsu, S., Hayakawa, S., Ushijima, H., Maneekarn, N., 2017. Noroviruses and sapoviruses associated with acute gastroenteritis in pediatric patients in Thailand: increased detection of recombinant norovirus GII.P16/GII.13 strains. Arch. Virol. 162, 3371-3380.

    13. Khamrin, P., Kumthip, K., Thongprachum, A., Sirilert, S., Malasao, R., Okitsu, S., Hayakawa, S., Ushijima, H., Maneekarn, N., 2020. Genetic diversity of norovirus genogroup I, II, IV and sapovirus in environmental water in Thailand. J. Infect. Public. Health. 13, 1481-1489.

    14. Kirk, M. D., Pires, S. M., Black, R. E., Caipo, M., Crump, J. A., Devleesschauwer, B., Dopfer, D., Fazil, A., Fischer-Walker, C. L., Hald, T. et al., 2015. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med. 12, e1001921.

    15. Kitajima, M., Oka, T., Haramoto, E., Takeda, N., Katayama, K., Katayama, H., 2010. Seasonal distribution and genetic diversity of genogroups I, II, and IV noroviruses in the Tamagawa River, Japan. Environ. Sci. Technol. 44, 7116-7122.

    16. Kittigul, L., Pombubpa, K., Rupprom, K., Thasiri, J., 2022. Detection of Norovirus Recombinant GII.2 [P16] Strains in Oysters in Thailand. Food Environ. Virol. 14, 59-68.

    17. Kittigul, L., Rupprom, K., Che-Arsae, M., Pombubpa, K., Thongprachum, A., Hayakawa, S., Ushijima, H., 2019. Occurrence of noroviruses in recycled water and sewage sludge: emergence of recombinant norovirus strains. J. Appl. Microbiol. 126, 1290-1301.

    18. Kittigul, L., Thamjaroen, A., Chiawchan, S., Chavalitshewinkoon-Petmitr, P., Pombubpa, K., Diraphat, P., 2016. Prevalence and molecular genotyping of noroviruses in market oysters, mussels, and cockles in Bangkok, Thailand. Food Environ. Virol. 8, 133-140.

    19. Kojima, S., Kageyama, T., Fukushi, S., Hoshino, F. B., Shinohara, M., Uchida, K., Natori, K., Takeda, N., Katayama, K., 2002. Genogroup-specific PCR primers for detection of Norwalk-like viruses. J. Virol. Methods. 100, 107-114.

    20. Kumthip, K., Khamrin, P., Maneekarn, N., 2018. Molecular epidemiology and genotype distributions of noroviruses and sapoviruses in Thailand 2000-2016: a review. J. Med. Virol. 90, 617-624.

    21. Kumthip, K., Khamrin, P., Yodmeeklin, A., Maneekarn, N., 2020. Prevalence and genetic characterization of aichivirus in environmental waters in Thailand. Food Environ. Virol. 12, 342-349.

    22. La Rosa, G., Della Libera, S., Iaconelli, M., Proroga, Y. T. R., De Medici, D., Martella, V., Suffredini, E., 2017. Detection of norovirus GII.17 Kawasaki 2014 in shellfish, marine water and underwater sewage discharges in Italy. Food Environ. Virol. 9, 326-333.

    23. Lewis, G. D., Metcalf, T. G., 1988. Polyethylene glycol precipitation for recovery of pathogenic viruses, including hepatitis A virus and human rotavirus, from oyster, water, and sediment samples. Appl. Environ. Microbiol. 54, 1983-1988.

    24. Li, X., Chen, H., Kingsley, D. H., 2013. The influence of temperature, pH, and water immersion on the high hydrostatic pressure inactivation of GI.1 and GII.4 human noroviruses. Int. J. Food Microbiol. 167, 138-143.

    25. Liao, Y., Hong, X., Wu, A., Jiang, Y., Liang, Y., Gao, J., Xue, L., Kou, X., 2021. Global prevalence of norovirus in cases of acute gastroenteritis from 1997 to 2021: an updated systematic review and meta-analysis. Microb. Pathog. 161, 105259.

    26. Lowmoung, T., Pombubpa, K., Duangdee, T., Tipayamongkholgul, M., Kittigul, L., 2017. Distribution of naturally occurring norovirus genogroups I, II, and IV in oyster tissues. Food Environ. Virol. 9, 415-422.

    27. Nenonen, N. P., Hannoun, C., Larsson, C. U., Bergstrom, T., 2012. Marked genomic diversity of norovirus genogroup I strains in a waterborne outbreak. Appl. Environ. Microbiol. 78, 1846-1852.

    28. Nordgren, J., Matussek, A., Mattsson, A., Svensson, L., Lindgren, P. E., 2009. Prevalence of norovirus and factors influencing virus concentrations during one year in a full-scale wastewater treatment plant. Water Res. 43, 1117-1125.

    29. Parra, G. I., 2019. Emergence of norovirus strains: a tale of two genes. Virus Evol. 5, vez048.

    30. Pham, N. T. K., Khamrin, P., Shimizu-Onda, Y., Hoque, S. A., Trinh, Q. D., Komine-Aizawa, S., Okitsu, S., Maneekarn, N., Hayakawa, S., Yoshimune, K. et al., 2023. Genetic diversity and declining norovirus prevalence in infants and children during Japan's COVID-19 pandemic: a three-year molecular surveillance. Arch. Virol. 168, 231.

    31. Phengma, P., Khamrin, P., Jampanil, N., Yodmeeklin, A., Ukarapol, N., Maneekarn, N., Kumthip, K., 2022. Molecular epidemiology and characterization of norovirus and sapovirus in pediatric patients with acute diarrhea in Thailand, 2019-2020. J. Infect. Public Health. 15, 1013-1019.

    32. Rohayem, J., 2009. Norovirus seasonality and the potential impact of climate change. Clin. Microbiol. Infect. 15, 524-527.

    33. Sarmento, S. K., de Andrade, J., Malta, F. C., Fialho, A. M., Mello, M. S., Burlandy, F. M., Fumian, T. M., 2023. Norovirus epidemiology and genotype circulation during the COVID-19 pandemic in Brazil, 2019-2022. Pathogens. 13, 3.

    34. Suffredini, E., Iaconelli, M., Equestre, M., Valdazo-Gonzalez, B., Ciccaglione, A. R., Marcantonio, C., Della Libera, S., Bignami, F., La Rosa, G., 2018. Genetic diversity among genogroup II noroviruses and progressive emergence of GII.17 in wastewaters in Italy (2011-2016) revealed by next-generation and Sanger sequencing. Food Environ. Virol. 10, 141-150.

    35. Supadej, K., Khamrin, P., Kumthip, K., Malasao, R., Chaimongkol, N., Saito, M., Oshitani, H., Ushijima, H., Maneekarn, N., 2019. Distribution of norovirus and sapovirus genotypes with emergence of NoV GII.P16/GII.2 recombinant strains in Chiang Mai, Thailand. J. Med. Virol. 91, 215-224.

    36. Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022-3027.

    37. Teunis, P. F., Moe, C. L., Liu, P., Miller, S. E., Lindesmith, L., Baric, R. S., Pendu, J. L., Calderon, R. C., 2008. Norwalk virus: how infectious is it? J. Med. Virol. 80, 1468-1476.

    38. Thongprachum, A., Fujimoto, T., Takanashi, S., Saito, H., Okitsu, S., Shimizu, H., Khamrin, P., Maneekarn, N., Hayakawa, S., Ushijima, H., 2018. Detection of nineteen enteric viruses in raw sewage in Japan. Infect. Genet. Evol. 63, 17-23.

    39. Westrell, T., Teunis, P., van den Berg, H., Lodder, W., Ketelaars, H., Stenstrom, T. A., de Roda Husman, A. M., 2006. Short- and long-term variations of norovirus concentrations in the Meuse river during a 2-year study period. Water Res. 40, 2613-2620.

    40. Wittler, R. R., 2023. Foodborne and Waterborne Illness. Pediatr. Rev. 44, 81-91.

    41. Yan, Y., Wang, H. H., Gao, L., Ji, J. M., Ge, Z. J., Zhu, X. Q., He, P. Y., Chen, Z. W., 2013. A one-step multiplex real-time RT-PCR assay for rapid and simultaneous detection of human norovirus genogroup I, II and IV. J. Virol. Methods. 189, 277-282.

    42. Yezli, S., Otter, J. A., 2011. Minimum infective dose of the major human respiratory and enteric viruses transmitted through food and the environment. Food Environ. Virol. 3, 1-30.

  • 加载中

Figures(1)

Article Metrics

Article views(982) PDF downloads(5) Cited by()

Related
Proportional views

    Diverse genotypes of norovirus genogroup I and II contamination in environmental water in Thailand during the COVID-19 outbreak from 2020 to 2022

      Corresponding author: Niwat Maneekarn, niwat.m@cmu.ac.th
    • a. Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand;
    • b. Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand;
    • c. Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand;
    • d. Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand;
    • e. Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan

    Abstract: Noroviruses (NoVs) are the most significant viral pathogens associated with waterborne and foodborne outbreaks of nonbacterial acute gastroenteritis in humans worldwide. This study aimed to investigate the prevalence and diversity of NoVs contaminated in the environmental water in Chiang Mai, Thailand. A total of 600 environmental water samples were collected from ten sampling sites in Chiang Mai from July 2020 to December 2022. The presence of NoV genogroups I (GI), GII, and GIV were examined using real-time RT-PCR assay. The genotype of the virus was determined by nucleotide sequencing and phylogenetic analysis. The results showed that NoV GI and GII were detected at 8.5% (51/600) and 11.7% (70/600) of the samples tested, respectively. However, NoV GIV was not detected in this study. NoV circulated throughout the year, with a higher detection rate during the winter season. Six NoV GI genotypes (GI.1-GI.6) and eight NoV GII genotypes (GII.2, GII.3, GII.7, GII.8, GII.10, GII.13, GII.17, and GII.21) were identified. Among 121 NoV strains detected, GII.17 was the most predominant genotype (24.8%, 30 strains), followed by GII.2 (21.5%, 26 strains), GI.3 (17.4%, 21 strains), and GI.4 (16.5%, 20 strains). Notably, NoV GII.3, GII.7, GII.8, and GII.10 were detected for the first time in water samples in this area. This study provides insight into the occurrence and seasonal pattern of NoV along with novel findings of NoV strains in environmental water in Thailand during the COVID-19 outbreak. Our findings emphasize the importance of further surveillance studies to monitor viral contamination in environmental water.

    Figure (1)  Reference (42) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return