Citation: Junsen Chen, Junqing Sun, Zepeng Xu, Linjie Li, Xinrui Kang, Chunliang Luo, Qi Wang, Xueyang Guo, Yan Li, Kefang Liu, Ying Wu. The binding and structural basis of fox ACE2 to RBDs from different sarbecoviruses .VIROLOGICA SINICA, 2024, 39(4) : 609-618.  http://dx.doi.org/10.1016/j.virs.2024.06.004

The binding and structural basis of fox ACE2 to RBDs from different sarbecoviruses

cstr: 32224.14.j.virs.2024.06.004
  • Corresponding author: Kefang Liu, liukf@im.ac.cn
    Ying Wu, yingwu@whu.edu.cn
  • Received Date: 19 March 2024
    Accepted Date: 06 June 2024
    Available online: 10 June 2024
  • Foxes are susceptible to SARS-CoV-2 in laboratory settings, and there have also been reports of natural infections of both SARS-CoV and SARS-CoV-2 in foxes. In this study, we assessed the binding capacities of fox ACE2 to important sarbecoviruses, including SARS-CoV, SARS-CoV-2, and animal-origin SARS-CoV-2 related viruses. Our findings demonstrated that fox ACE2 exhibits broad binding capabilities to receptor-binding domains (RBDs) of sarbecoviruses. We further determined the cryo-EM structures of fox ACE2 complexed with RBDs of SARS-CoV, SARS-CoV-2 prototype (PT), and Omicron BF.7. Through structural analysis, we identified that the K417 mutation can weaken the ability of SARS-CoV-2 sub-variants to bind to fox ACE2, thereby reducing the susceptibility of foxes to SARS-CoV-2 sub-variants. In addition, the Y498 residue in the SARS-CoV RBD plays a crucial role in forming a vital cation-π interaction with K353 in the fox ACE2 receptor. This interaction is the primary determinant for the higher affinity of the SARS-CoV RBD compared to that of the SARS-CoV-2 PT RBD. These results indicate that foxes serve as potential hosts for numerous sarbecoviruses, highlighting the critical importance of surveillance efforts.

  • 加载中
  • 10.1016j.virs.2024.06.004-ESM.docx
    1. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., Zwart, P. H., 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr, 66: 213-221.

    2. Bepler, T., Morin, A., Rapp, M., Brasch, J., Shapiro, L., Noble, A. J., Berger, B., 2019. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat Methods, 16: 1153-1160.

    3. Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., Richardson, D. C., 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr, 66: 12-21.

    4. Cui, S., Liu, Y., Zhao, J., Peng, X., Lu, G., Shi, W., Pan, Y., Zhang, D., Yang, P., Wang, Q., 2022. An updated review on SARS-CoV-2 infection in animals. Viruses, 14: 1527.

    5. Emsley, P., Lohkamp, B., Scott, W. G., Cowtan, K., 2010. Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 66: 486-501.

    6. Gao, G. F., Wang, L., 2021. COVID-19 expands its territories from humans to animals. China CDC Weekly, 3: 855-858.

    7. Gu, H., Chen, Q., Yang, G., He, L., Fan, H., Deng, Y. Q., Wang, Y., Teng, Y., Zhao, Z., Cui, Y., Li, Y., Li, X. F., Li, J., Zhang, N. N., Yang, X., Chen, S., Guo, Y., Zhao, G., Wang, X., Luo, D. Y., Wang, H., Yang, X., Li, Y., Han, G., He, Y., Zhou, X., Geng, S., Sheng, X., Jiang, S., Sun, S., Qin, C.F., Zhou, Y., 2020. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science, 369: 1603-1607.

    8. Hammer, A. S., Quaade, M. L., Rasmussen, T. B., Fonager, J., Rasmussen, M., Mundbjerg, K., Lohse, L., Strandbygaard, B., Joergensen, C. S., Alfaro-Nunez, A., Rosenstierne, M. W., Boklund, A., Halasa, T., Fomsgaard, A., Belsham, G. J., Boetner, A., 2021. SARS-CoV-2 Transmission between mink (Neovison vison) and humans, Denmark. Emerg Infect Dis, 27: 547-551.

    9. Han, P., Su, C., Zhang, Y., Bai, C., Zheng, A., Qiao, C., Wang, Q., Niu, S., Chen, Q., Zhang, Y., Li, W., Liao, H., Li, J., Zhang, Z., Cho, H., Yang, M., Rong, X., Hu, Y., Huang, N., Yan, J., Wang, Q., Zhao, X., Gao, G.F., Qi, J., 2021. Molecular insights into receptor binding of recent emerging SARS-CoV-2 variants. Nat Commun, 12: 6103.

    10. Han, P., Meng, Y., Zhang, D., Xu, Z., Li, Z., Pan, X., Zhao, Z., Li, L., Tang, L., Qi, J., Liu, K., Gao, G. F., 2023. Structural basis of white-tailed deer, Odocoileus virginianus, ACE2 recognizing all the SARS-CoV-2 variants of concern with high affinity. J Virol, 97: e0050523.

    11. Hu, Y., Liu, K., Han, P., Xu, Z., Zheng, A., Pan, X., Jia, Y., Su, C., Tang, L., Wu, L., Bai, B., Zhao, X., Tian, D., Chen, Z., Qi, J., Wang, Q., Gao, G. F., 2023. Host range and structural analysis of bat-origin RshSTT182/200 coronavirus binding to human ACE2 and its animal orthologs. EMBO J, 42: e111737.

    12. Kane, Y., Wong, G., Gao, G. F., 2023. Animal models, zoonotic reservoirs, and cross-species transmission of emerging human-infecting coronaviruses. Annu Rev Anim Biosci, 11: 1-31.

    13. Li, L., Han, P., Huang, B., Xie, Y., Li, W., Zhang, D., Han, P., Xu, Z., Bai, B., Zhou, J., Kang, X., Li, X., Zheng, A., Zhang, R., Qiao, S., Zhao, X., Qi, J., Wang, Q., Liu, K., Gao, G. F., 2022. Broader-species receptor binding and structural bases of Omicron SARS-CoV-2 to both mouse and palm-civet ACE2s. Cell Discov, 8: 65.

    14. Li, W., Xu, Z., Niu, T., Xie, Y., Zhao, Z., Li, D., He, Q., Sun, W., Shi, K., Guo, W., Chang, Z., Liu, K., Fan, Z., Qi, J., Gao, G. F., 2024. Key mechanistic features of the trade-off between antibody escape and host cell binding in the SARS-CoV-2 Omicron variant spike proteins. EMBO J, 43:1484-1498.

    15. Liu, K., Pan, X., Li, L., Yu, F., Zheng, A., Du, P., Han, P., Meng, Y., Zhang, Y., Wu, L., Chen, Q., Song, C., Jia, Y., Niu, S., Lu, D., Qiao, C., Chen, Z., Ma, D., Ma, X., Tan, S., Zhao, X., Qi, J., Gao, G.F., Wang, Q., 2021. Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell, 184: 3438-3451.e10.

    16. Liu, Y., Hu, G., Wang, Y., Ren, W., Zhao, X., Ji, F., Zhu, Y., Feng, F., Gong, M., Ju, X., Zhu, Y., Cai, X., Lan, J., Guo, J., Xie, M., Dong, L., Zhu, Z., Na, J., Wu, J., Lan, X., Xie, Y., Wang, X., Yuan, Z., Zhang, R., Ding, Q., 2021. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Proc Natl Acad Sci U S A, 118: e2025373118.

    17. Niu, S., Wang, J., Bai, B., Wu, L., Zheng, A., Chen, Q., Du, P., Han, P., Zhang, Y., Jia, Y., Qiao, C., Qi, J., Tian, W. X., Wang, H. W., Wang, Q., Gao, G. F., 2022. Molecular basis of cross-species ACE2 interactions with SARS-CoV-2-like viruses of pangolin origin. EMBO J, 41: e109962.

    18. Peng, R., Wu, L. A., Wang, Q., Qi, J., Gao, G. F., 2021. Cell entry by SARS-CoV-2. Trends Biochem Sci, 46: 848-860.

    19. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., Ferrin, T. E., 2004. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem, 25: 1605-1612.

    20. Pickering, B., Lung, O., Maguire, F., Kruczkiewicz, P., Kotwa, J. D., Buchanan, T., Gagnier, M., Guthrie, J. L., Jardine, C. M., Marchand-Austin, A., Masse, A., McClinchey, H., Nirmalarajah, K., Aftanas, P., Blais-Savoie, J., Chee, H. Y., Chien, E., Yim, W., Banete, A., Griffin, B. D., Yip, L., Goolia, M., Suderman, M., Pinette, M., Smith, G., Sullivan, D., Rudar, J., Vernygora, O., Adey, E., Nebroski, M., Goyette, G., Finzi, A., Laroche, G., Ariana, A., Vahkal, B., Cote, M., McGeer, A.J., Nituch, L., Mubareka, S., Bowman, J., 2022. Divergent SARS-CoV-2 variant emerges in white-tailed deer with deer-to-human transmission. Nat Microbiol, 7: 2011-2024.

    21. Porter, S. M., Hartwig, A. E., Bielefeldt-Ohmann, H., Bosco-Lauth, A. M., Root, J. J., 2022. Susceptibility of wild canids to SARS-CoV-2. Emerg Infect Dis, 28: 1852-1855.

    22. Punjani, A., Rubinstein, J. L., Fleet, D. J., Brubaker, M. A., 2017. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods, 14: 290-296.

    23. Rao, X., Zhao, R., Tong, Z., Guo, S., Peng, W., Liu, K., Li, S., Wu, L., Tong, J., Chai, Y., Han, P., Wang, F., Jia, P., Li, Z., Zhao, X., Li, D., Zhang, R., Zhang, X., Zou, W., Li, W., Wang, Q., Gao, G.F., Wu, Y., Dai, L., Gao, F., 2023. Defining a de novo non-RBM antibody as RBD-8 and its synergistic rescue of immune-evaded antibodies to neutralize Omicron SARS-CoV-2. Proc Natl Acad Sci U S A, 120: e2314193120.

    24. Tang, L., Zhang, D., Han, P., Kang, X., Zheng, A., Xu, Z., Zhao, X., Wang, V. Y., Qi, J., Wang, Q., Liu, K., Gao, G. F., 2022. Structural basis of SARS-CoV-2 and its variants binding to intermediate horseshoe bat ACE2. Int J Biol Sci, 18: 4658-4668.

    25. Wang, M., Jing, H. Q., Xu, H. F., Jiang, X. G., Kan, B., Liu, Q. Y., Wan, K. L., Cui, B. Y., Zheng, H., Cui, Z. G., Yan, M. Y., Liang, W. L., Wang, H. X., Qi, X. B., Li, Z. J., Li, M. C., Chen, K., Zhang, E. M., Zhang, S. Y., Hai, R., Yu, D.Z., Xu, J. G., 2005. Surveillance on severe acute respiratory syndrome associated coronavirus in animals at a live animal market of Guangzhou in 2004. Zhonghua Liu Xing Bing Xue Za Zhi, 26: 84-87. (In Chinese).

    26. Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J., Qi, J., 2020. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181: 894-904.e9.

    27. Wang, K., Pan, Y., Wang, D., Yuan, Y., Li, M., Chen, Y., Bi, L., Zhang, X. E., 2023. Altered hACE2 binding affinity and S1/S2 cleavage efficiency of SARS-CoV-2 spike protein mutants affect viral cell entry. Virol Sin, 38: 595-605.

    28. World Organization for Animal Health (OIE) (WOAH), 2023. SARS-COV-2 in animals-Situation report 22. https://www.woah.org/en/document/sars-cov-2-in-animals-situation-report-22/ (Accessed 30 June 2023).

    29. Wu, L., Chen, Q., Liu, K., Wang, J., Han, P., Zhang, Y., Hu, Y., Meng, Y., Pan, X., Qiao, C., Tian, S., Du, P., Song, H., Shi, W., Qi, J., Wang, H. W., Yan, J., Gao, G. F., Wang, Q., 2020. Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell Discov, 6: 68.

    30. Xu, Z., Kang, X., Han, P., Du, P., Li, L., Zheng, A., Deng, C., Qi, J., Zhao, X., Wang, Q., Liu, K., Gao, G. F., 2022a. Binding and structural basis of equine ACE2 to RBDs from SARS-CoV, SARS-CoV-2 and related coronaviruses. Nat Commun, 13: 3547.

    31. Xu, Z., Liu, K., Gao, G. F., 2022b. Omicron variant of SARS-CoV-2 imposes a new challenge for the global public health. Biosaf Health, 4: 147-149.

    32. Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., Zhou, Q., 2020. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, N.Y.), 367: 1444-1448.

    33. Zhang, Z., Zhang, Y., Liu, K., Li, Y., Lu, Q., Wang, Q., Zhang, Y., Wang, L., Liao, H., Zheng, A., Ma, S., Fan, Z., Li, H., Huang, W., Bi, Y., Zhao, X., Wang, Q., Gao, G. F., Xiao, H., Tong, Z., Qi, J., Sun, Y., 2021. The molecular basis for SARS-CoV-2 binding to dog ACE2. Nat Commun, 12: 4195.

    34. Zhao, X., Zheng, A., Li, D., Zhang, R., Sun, H., Wang, Q., Gao, G. F., Han, P., Dai, L., 2021. Neutralisation of ZF2001-elicited antisera to SARS-CoV-2 variants. Lancet Microbe, 2: e494.

    35. Zhao, Z., Xie, Y., Bai, B., Luo, C., Zhou, J., Li, W., Meng, Y., Li, L., Li, D., Li, X., Li, X., Wang, X., Sun, J., Xu, Z., Sun, Y., Zhang, W., Fan, Z., Zhao, X., Wu, L., Ma, J., Li, O.Y., Shang, G., Chai, Y., Liu, K., Wang, P., Gao, G.F., Qi, J., 2023. Structural basis for receptor binding and broader interspecies receptor recognition of currently circulating Omicron sub-variants. Nat Commun, 14: 4405.

    36. Zheng, S. Q., Palovcak, E., Armache, J. P., Verba, K. A., Cheng, Y., Agard, D. A., 2017. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods, 14: 331-332.

    37. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., Tan, W., China Novel Coronavirus Investigating and Research Team, 2020. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med, 382: 727-733.

  • 加载中

Figures(1)

Article Metrics

Article views(982) PDF downloads(2) Cited by()

Related
Proportional views

    The binding and structural basis of fox ACE2 to RBDs from different sarbecoviruses

      Corresponding author: Kefang Liu, liukf@im.ac.cn
      Corresponding author: Ying Wu, yingwu@whu.edu.cn
    • a. State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China;
    • b. CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China;
    • c. Beijing Life Science Academy, Beijing, 102209, China;
    • d. Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China

    Abstract: Foxes are susceptible to SARS-CoV-2 in laboratory settings, and there have also been reports of natural infections of both SARS-CoV and SARS-CoV-2 in foxes. In this study, we assessed the binding capacities of fox ACE2 to important sarbecoviruses, including SARS-CoV, SARS-CoV-2, and animal-origin SARS-CoV-2 related viruses. Our findings demonstrated that fox ACE2 exhibits broad binding capabilities to receptor-binding domains (RBDs) of sarbecoviruses. We further determined the cryo-EM structures of fox ACE2 complexed with RBDs of SARS-CoV, SARS-CoV-2 prototype (PT), and Omicron BF.7. Through structural analysis, we identified that the K417 mutation can weaken the ability of SARS-CoV-2 sub-variants to bind to fox ACE2, thereby reducing the susceptibility of foxes to SARS-CoV-2 sub-variants. In addition, the Y498 residue in the SARS-CoV RBD plays a crucial role in forming a vital cation-π interaction with K353 in the fox ACE2 receptor. This interaction is the primary determinant for the higher affinity of the SARS-CoV RBD compared to that of the SARS-CoV-2 PT RBD. These results indicate that foxes serve as potential hosts for numerous sarbecoviruses, highlighting the critical importance of surveillance efforts.

    Figure (1)  Reference (37) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return