Citation: Song-Kang Qin, Kuan-Hao Li, Ben-Jin Liu, Cun Cao, De-Bin Yu, Zhi-Gang Jiang, Jun Wang, Yu-Xin Han, Fang Wang, Ying-Lin Qi, Chao Sun, Li Yu, Ji-Tao Chang, Xin Yin. Efficient and robust reverse genetics system for bovine rotavirus generation and its application for antiviral screening .VIROLOGICA SINICA, 2024, 39(6) : 917-928.  http://dx.doi.org/10.1016/j.virs.2024.09.010

Efficient and robust reverse genetics system for bovine rotavirus generation and its application for antiviral screening

cstr: 32224.14.j.virs.2024.09.010
  • Corresponding author: Ji-Tao Chang, changjitao@caas.cn
    Xin Yin, yinxin@caas.cn
  • Received Date: 17 May 2023
    Accepted Date: 26 September 2024
    Available online: 29 September 2024
  • Unveiling the molecular mechanisms underlying rotavirus replication and pathogenesis has been hampered by the lack of a reverse genetics (RG) system in the past. Since 2017, multiple plasmid-based RG systems for simian, human, and murine-like rotaviruses have been established. However, none of the described methods have supported the recovery of bovine rotaviruses (BRVs). Here, we established an optimized plasmid-based RG system for BRV culture-adapted strain (BRV G10P [15] BLR) and clinical isolates (BRV G6P [1] C73, G10P [11] HM26) based on a BHK-T7 cell clone stably expressing T7 polymerase. Furthermore, using this optimized RG system, we successfully rescued the reporter virus BRV rC73/Zs, rHM26/Zs and rBLR/Zs, harboring a genetically modified 1.8-kb segment 7 encoding full-length nonstructural protein 3 (NSP3) fused to ZsGreen, a 232-amino acid green fluorescent protein. Analysis of the stability of genomic insertions showed that the rC73/Zs and rBLR/Zs replicated efficiently and were genetically stable in seven rounds of serial passaging, while rHM26/Zs can be stabilized only up to the third generation, indicating that the BRV segment composition may influence the viral fitness. In addition, we adopted the recombinant reporter viruses for high-throughput screening application and discovered 12 candidates out of 1440 compounds with potential antiviral activities against rotavirus. In summary, this improved RG system of BRVs represents an important tool with great potential for understanding the molecular biology of BRV and facilitates the development of novel therapeutics and vaccines for BRV.

  • 加载中
  • 10.1016j.virs.2024.09.010-ESM3.docx
    10.1016j.virs.2024.09.010-ESM4.xlsx
    10.1016j.virs.2024.09.010-ESM1.jpg
    10.1016j.virs.2024.09.010-ESM2.jpg
    10.1016j.virs.2024.09.010-ESM5.xlsx
    1. Al Mawly, J., Grinberg, A., Prattley, D., Moffat, J., Marshall, J., French, N., 2015. Risk factors for neonatal calf diarrhoea and enteropathogen shedding in New Zealand dairy farms. Vet. J. 203, 155-160.

    2. Arnold, M.M., Brownback, C.S., Taraporewala, Z.F., Patton, J.T., 2012. Rotavirus variant replicates efficiently although encoding an aberrant NSP3 that fails to induce nuclear localization of poly(A)-binding protein. J. Gen. Virol. 93, 1483-1494.

    3. Badaracco, A., Garaicoechea, L., Matthijnssens, J., Louge Uriarte, E., Odeon, A., Bilbao, G., Fernandez, F., Parra, G.I., Parreno, V., 2013. Phylogenetic analyses of typical bovine rotavirus genotypes G6, G10, P[5] and P[11] circulating in Argentinean beef and dairy herds. Infect. Genet. Evol. 18, 18-30.

    4. Badaracco, A., Garaicoechea, L., Rodriguez, D., Uriarte, E.L., Odeon, A., Bilbao, G., Galarza, R., Abdala, A., Fernandez, F., Parreno, V., 2012. Bovine rotavirus strains circulating in beef and dairy herds in Argentina from 2004 to 2010. Vet. Microbiol. 158, 394-399.

    5. Ballard, A., McCrae, M.A., Desselberger, U., 1992. Nucleotide sequences of normal and rearranged RNA segments 10 of human rotaviruses. J. Gen. Virol. 73, 633-638.

    6. Collins, P.J., Mulherin, E., Cashman, O., Lennon, G., Gunn, L., O'Shea, H., Fanning, S., 2014. Detection and characterisation of bovine rotavirus in Ireland from 2006-2008. Ir. Vet. J. 67, 13.

    7. Cowley, D., Donato, C.M., Roczo-Farkas, S., Kirkwood, C.D., 2013. Novel G10P[14] rotavirus strain, northern territory, Australia. Emerg. Infect. Dis. 19, 1324-1327.

    8. Desselberger, U., 2020. What are the limits of the packaging capacity for genomic RNA in the cores of rotaviruses and of other members of the Reoviridae? Virus Res. 276, 197822.

    9. Diebold, O., Gonzalez, V., Venditti, L., Sharp, C., Blake, R.A., Tan, W.S., Stevens, J., Caddy, S., Digard, P., Borodavka, A., Gaunt, E., 2022. Using species a rotavirus reverse genetics to engineer chimeric viruses expressing SARS-CoV-2 spike epitopes. J. Virol. 96, e0048822.

    10. Elkady, G., Zhu, J., Peng, Q., Chen, M., Liu, X., Chen, Y., Hu, C., Chen, H., Guo, A., 2021. Isolation and whole protein characterization of species A and B bovine rotaviruses from Chinese calves. Infect. Genet. Evol. 89, 104715.

    11. Falkenhagen, A., Patzina-Mehling, C., Gadicherla, A.K., Strydom, A., O'Neill, H.G., Johne, R., 2020. Generation of simian rotavirus reassortants with VP4- and VP7-encoding genome segments from human strains circulating in Africa using reverse genetics. Viruses. 12, 201.

    12. Falkenhagen, A., Patzina-Mehling, C., Ruckner, A., Vahlenkamp, T.W., Johne, R., 2019. Generation of simian rotavirus reassortants with diverse VP4 genes using reverse genetics. J. Gen. Virol. 100, 1595-1604.

    13. Fritzen, J.T.T., Oliveira, M.V., Lorenzetti, E., Miyabe, F.M., Viziack, M.P., Rodrigues, C.A., Ayres, H., Alfieri, A.F., Alfieri, A.A., 2019. Longitudinal surveillance of rotavirus A genotypes circulating in a high milk yield dairy cattle herd after the introduction of a rotavirus vaccine. Vet. Microbiol. 230, 260-264.

    14. Gault, E., Schnepf, N., Poncet, D., Servant, A., Teran, S., Garbarg-Chenon, A., 2001. A human rotavirus with rearranged genes 7 and 11 encodes a modified NSP3 protein and suggests an additional mechanism for gene rearrangement. J. Virol. 75, 7305-7314.

    15. Hundley, F., Biryahwaho, B., Gow, M., Desselberger, U., 1985. Genome rearrangements of bovine rotavirus after serial passage at high multiplicity of infection. Virology. 143, 88-103.

    16. Jamnikar-Ciglenecki, U., Kuhar, U., Sturm, S., Kirbis, A., Racki, N., Steyer, A., 2016. The first detection and whole genome characterization of the G6P[15] group A rotavirus strain from roe deer. Vet. Microbiol. 191, 52-59.

    17. Johne, R., Reetz, J., Kaufer, B.B., Trojnar, E., 2016. Generation of an avian-mammalian rotavirus reassortant by using a helper virus-dependent reverse genetics system. J. Virol. 90, 1439-1443.

    18. Kanai, Y., Kawagishi, T., Nouda, R., Onishi, M., Pannacha, P., Nurdin, J.A., Nomura, K., Matsuura, Y., Kobayashi, T., 2019. Development of stable rotavirus reporter expression systems. J. Virol. 93, e01774-18.

    19. Kanai, Y., Komoto, S., Kawagishi, T., Nouda, R., Nagasawa, N., Onishi, M., Matsuura, Y., Taniguchi, K., Kobayashi, T., 2017. Entirely plasmid-based reverse genetics system for rotaviruses. Proc. Natl. Acad. Sci. U. S. A 114, 2349-2354.

    20. Kawagishi, T., Nurdin, J.A., Onishi, M., Nouda, R., Kanai, Y., Tajima, T., Ushijima, H., Kobayashi, T., 2020. Reverse genetics system for a human group A rotavirus. J. Virol. 94, e00963-19.

    21. Kojima, K., Taniguchi, K., Urasawa, T., Urasawa, S., 1996. Sequence analysis of normal and rearranged NSP5 genes from human rotavirus strains isolated in nature: implications for the occurrence of the rearrangement at the step of plus strand synthesis. Virology. 224, 446-452.

    22. Komoto, S., Fukuda, S., Ide, T., Ito, N., Sugiyama, M., Yoshikawa, T., Murata, T., Taniguchi, K., 2018. Generation of recombinant rotaviruses expressing fluorescent proteins by using an optimized reverse genetics system. J. Virol. 92, e00588-18.

    23. Komoto, S., Fukuda, S., Kugita, M., Hatazawa, R., Koyama, C., Katayama, K., Murata, T., Taniguchi, K., 2019. Generation of infectious recombinant human rotaviruses from just 11 cloned cDNAs encoding the rotavirus genome. J. Virol. 93, e02207-18.

    24. Komoto, S., Kanai, Y., Fukuda, S., Kugita, M., Kawagishi, T., Ito, N., Sugiyama, M., Matsuura, Y., Kobayashi, T., Taniguchi, K., 2017. Reverse genetics system demonstrates that rotavirus nonstructural protein NSP6 is not essential for viral replication in cell culture. J. Virol. 91, e00695-17.

    25. Komoto, S., Sasaki, J., Taniguchi, K., 2006. Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus. Proc. Natl. Acad. Sci. U. S. A 103, 4646-4651.

    26. Komoto, S., Taniguchi, K., 2014. [Rotaviruses]. Uirusu 64, 179-190.

    27. Liu, X., Yan, N., Yue, H., Wang, Y., Zhang, B., Tang, C., 2021. Detection and molecular characteristics of bovine rotavirus A in dairy calves in China. J. Vet. Sci. 22, e69.

    28. Maan, S., Rao, S., Maan, N.S., Anthony, S.J., Attoui, H., Samuel, A.R., Mertens, P.P.C., 2007. Rapid cDNA synthesis and sequencing techniques for the genetic study of bluetongue and other dsRNA viruses. J. Virol. Methods 143, 132-139.

    29. Mohamed, F.F., Mansour, S.M.G., El-Araby, I.E., Mor, S.K., Goyal, S.M., 2017. Molecular detection of enteric viruses from diarrheic calves in Egypt. Arch. Virol. 162, 129-137.

    30. Navarro, A., Trask, S.D., Patton, J.T., 2013. Generation of genetically stable recombinant rotaviruses containing novel genome rearrangements and heterologous sequences by reverse genetics. J. Virol. 87, 6211-6220.

    31. Papp, H., Laszlo, B., Jakab, F., Ganesh, B., De Grazia, S., Matthijnssens, J., Ciarlet, M., Martella, V., Banyai, K., 2013. Review of group A rotavirus strains reported in swine and cattle. Vet. Microbiol. 165, 190-199.

    32. Patton, J.T., Taraporewala, Z., Chen, D., Chizhikov, V., Jones, M., Elhelu, A., Collins, M., Kearney, K., Wagner, M., Hoshino, Y. et al., 2001. Effect of intragenic rearrangement and changes in the 3' consensus sequence on NSP1 expression and rotavirus replication. J. Virol. 75, 2076-2086.

    33. Philip, A.A., Dai, J., Katen, S.P., Patton, J.T., 2020. Simplified reverse genetics method to recover recombinant rotaviruses expressing reporter proteins. J. Vis. Exp. 17.

    34. Philip, A.A., Herrin, B.E., Garcia, M.L., Abad, A.T., Katen, S.P., Patton, J.T., 2019a. Collection of recombinant rotaviruses expressing fluorescent reporter proteins. Microbiol. Resour. Announc. 8, e00523-19.

    35. Philip, A.A., Patton, J.T., 2022. Generation of recombinant rotaviruses expressing human norovirus capsid proteins. J. Virol. 96, e0126222.

    36. Philip, A.A., Patton, J.T., 2020. Expression of separate heterologous proteins from the rotavirus NSP3 genome segment using a translational 2A stop-restart element. J. Virol. 94, e00959-20.

    37. Philip, A.A., Perry, J.L., Eaton, H.E., Shmulevitz, M., Hyser, J.M., Patton, J.T., 2019b. Generation of recombinant rotavirus expressing NSP3-UnaG fusion protein by a simplified reverse genetics system. J. Virol. 93, e01616-19.

    38. Pourasgari, F., Kaplon, J., Karimi-Naghlani, S., Fremy, C., Otarod, V., Ambert-Balay, K., Mirjalili, A., Pothier, P., 2016. The molecular epidemiology of bovine rotaviruses circulating in Iran: a two-year study. Arch. Virol. 161, 3483-3494.

    39. Riva, L., Goellner, S., Biering, S.B., Huang, C.-T., Rubanov, A.N., Haselmann, U., Warnes, C.M., De Jesus, P.D., Martin-Sancho, L., Terskikh, A.V. et al., 2021. The compound SBI-0090799 inhibits Zika virus infection by blocking De Novo formation of the membranous replication compartment. J. Virol. 95, e0099621.

    40. Sanchez-Tacuba, L., Feng, N., Meade, N.J., Mellits, K.H., Jais, P.H., Yasukawa, L.L., Resch, T.K., Jiang, B., Lopez, S., Ding, S. et al., 2020. An optimized reverse genetics system suitable for efficient recovery of simian, human, and murine-like rotaviruses. J. Virol. 94, e01294-20.

    41. Shen, S., Burke, B., Desselberger, U., 1994. Rearrangement of the VP6 gene of a group A rotavirus in combination with a point mutation affecting trimer stability. J. Virol. 68, 1682-1688.

    42. Trask, S.D., Taraporewala, Z.F., Boehme, K.W., Dermody, T.S., Patton, J.T., 2010. Dual selection mechanisms drive efficient single-gene reverse genetics for rotavirus. Proc. Natl. Acad. Sci. U. S. A 107, 18652-18657.

    43. Troupin, C., Dehee, A., Schnuriger, A., Vende, P., Poncet, D., Garbarg-Chenon, A., 2010. Rearranged genomic RNA segments offer a new approach to the reverse genetics of rotaviruses. J. Virol. 84, 6711-6719.

    44. Wei, S., Gong, Z., Che, T., Guli, A., Tian, F., 2013. Genotyping of calves rotavirus in China by reverse transcription polymerase chain reaction. J. Virol Methods 189, 36-40.

    45. Yan, N., Li, R., Wang, Y., Zhang, B., Yue, H., Tang, C., 2020. High prevalence and genomic characteristics of G6P[1] Bovine Rotavirus A in yak in China. J. Gen. Virol. 101, 701-711.

    46. Yin, Y., Wang, Y., Dang, W., Xu, L., Su, J., Zhou, X., Wang, W., Felczak, K., van der Laan, L.J.W., Pankiewicz, K.W. et al., 2016. Mycophenolic acid potently inhibits rotavirus infection with a high barrier to resistance development. Antivir. Res. 133, 41-49.

  • 加载中

Figures(1)

Article Metrics

Article views(525) PDF downloads(8) Cited by()

Related
Proportional views

    Efficient and robust reverse genetics system for bovine rotavirus generation and its application for antiviral screening

      Corresponding author: Ji-Tao Chang, changjitao@caas.cn
      Corresponding author: Xin Yin, yinxin@caas.cn
    • a. State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China;
    • b. Laboratory of Molecular and Cellular Epigenetics, Grappe Interdisciplinaire de Génoprotéomique Appliquée, University of Liège, 4000 Liège, Belgium; Molecular Biology, Teaching and Research Center, 5030 Gembloux, Belgium;
    • c. Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji, 831100, China

    Abstract: Unveiling the molecular mechanisms underlying rotavirus replication and pathogenesis has been hampered by the lack of a reverse genetics (RG) system in the past. Since 2017, multiple plasmid-based RG systems for simian, human, and murine-like rotaviruses have been established. However, none of the described methods have supported the recovery of bovine rotaviruses (BRVs). Here, we established an optimized plasmid-based RG system for BRV culture-adapted strain (BRV G10P [15] BLR) and clinical isolates (BRV G6P [1] C73, G10P [11] HM26) based on a BHK-T7 cell clone stably expressing T7 polymerase. Furthermore, using this optimized RG system, we successfully rescued the reporter virus BRV rC73/Zs, rHM26/Zs and rBLR/Zs, harboring a genetically modified 1.8-kb segment 7 encoding full-length nonstructural protein 3 (NSP3) fused to ZsGreen, a 232-amino acid green fluorescent protein. Analysis of the stability of genomic insertions showed that the rC73/Zs and rBLR/Zs replicated efficiently and were genetically stable in seven rounds of serial passaging, while rHM26/Zs can be stabilized only up to the third generation, indicating that the BRV segment composition may influence the viral fitness. In addition, we adopted the recombinant reporter viruses for high-throughput screening application and discovered 12 candidates out of 1440 compounds with potential antiviral activities against rotavirus. In summary, this improved RG system of BRVs represents an important tool with great potential for understanding the molecular biology of BRV and facilitates the development of novel therapeutics and vaccines for BRV.

    Figure (1)  Reference (46) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return