Ningning Ge, Jin Sun, Zhihua Liu, Jiayi Shu, Huimin Yan, Zhihua Kou, Yu Wei and Xia Jin. An mRNA vaccine encoding Chikungunya virus E2-E1 protein elicits robust neutralizing antibody responses and CTL immune responses[J]. Virologica Sinica, 2022, 37(2): 266-276. doi: 10.1016/j.virs.2022.01.032
Citation: Ningning Ge, Jin Sun, Zhihua Liu, Jiayi Shu, Huimin Yan, Zhihua Kou, Yu Wei, Xia Jin. An mRNA vaccine encoding Chikungunya virus E2-E1 protein elicits robust neutralizing antibody responses and CTL immune responses .VIROLOGICA SINICA, 2022, 37(2) : 266-276.  http://dx.doi.org/10.1016/j.virs.2022.01.032

编码基孔肯雅病毒E2-E1蛋白的mRNA疫苗可诱导强力的中和抗体反应和细胞毒性T细胞免疫反应

  • 伊蚊传播的基孔肯雅病毒(CHIKV)感染可导致人类关节炎。然而,目前还没有可用于临床的针对CHIKV的特定抗病毒药物和有效的许可疫苗。在这里,我们研发了一种编码CHIKV E2-E1抗原的mRNA-LNP疫苗,并将其与S2细胞中表达的可溶性重组蛋白sE2-E1抗原进行了免疫原性比较。结果表明,与铝佐剂混合的重组蛋白抗原在C57BL/6小鼠中引发了强烈的抗原特异性体液免疫反应和较弱的细胞免疫反应。同时,二聚体形式的sE2-E1疫苗刺激的中和抗体水平比单体sE1疫苗和sE2疫苗高12—23倍。重要的是,当通过mRNA-LNP疫苗递送E2-E1基因时,与重组蛋白sE2-E1相比较,不仅诱导了更好的中和抗体反应,而且还产生了更强的细胞免疫反应,尤其是CD8 T细胞反应。而且,E2-E1-mRNA-LNP诱导的CD8 T细胞在体内具有特异性细胞毒作用。鉴于其具有较好的免疫原性和制备方便的特点,我们认为CHIKV E2-E1-LNP mRNA疫苗是未来应该重点关注、具有进一步研发价值的CHIKV疫苗。

An mRNA vaccine encoding Chikungunya virus E2-E1 protein elicits robust neutralizing antibody responses and CTL immune responses

  • Arthropod-borne chikungunya virus (CHIKV) infection can cause a debilitating arthritic disease in human. However, there are no specific antiviral drugs and effective licensed vaccines against CHIKV available for clinical use. Here, we developed an mRNA-lipid nanoparticle (mRNA-LNP) vaccine expressing CHIKV E2-E1 antigen, and compared its immunogenicity with soluble recombinant protein sE2-E1 antigen expressed in S2 cells. For comparison, we first showed that recombinant protein antigens mixed with aluminum adjuvant elicit strong antigen-specific humoral immune response and a moderate cellular immune response in C57BL/6 mice. Moreover, sE2-E1 vaccine stimulated 12-23 folds more neutralizing antibodies than sE1 vaccine and sE2 vaccine. Significantly, when E2-E1 gene was delivered by an mRNA-LNP vaccine, not only the better magnitude of neutralizing antibody responses was induced, but also greater cellular immune responses were generated, especially for CD8+ T cell responses. Moreover, E2-E1-LNP induced CD8+ T cells can perform cytotoxic effect in vivo. Considering its better immunogenicity and convenience of preparation, we suggest that more attention should be placed to develop CHIKV E2-E1-LNP mRNA vaccine.

  • 加载中
    1. Akahata, W., Yang, Z.Y., Andersen, H., Sun, S., Holdaway, H.A., Kong, W.P., Lewis, M.G., Higgs, S., Rossmann, M.G., Rao, S., Nabel, G.J., 2010. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat. Med. 16, 334–338.

    2. Bahl, K., Senn, J.J., Yuzhakov, O., Bulychev, A., Brito, L.A., Hassett, K.J., Laska, M.E., Smith, M., Almarsson, O., Thompson, J., Ribeiro, A.M., Watson, M., Zaks, T., Ciaramella, G., 2017. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 25, 1316–1327.

    3. Basore, K., Kim, A.S., Nelson, C.A., Zhang, R., Smith, B.K., Uranga, C., Vang, L., Cheng, M., Gross, M.L., Smith, J., Diamond, M.S., Fremont, D.H., 2019. Cryo-EM structure of chikungunya virus in complex with the Mxra8 receptor. Cell 177, 1725–1737 e1716.

    4. Borgherini, G., Poubeau, P., Jossaume, A., Gouix, A., Cotte, L., Michault, A., ArvinBerod, C., Paganin, F., 2008. Persistent arthralgia associated with chikungunya virus:a study of 88 adult patients on reunion island. Clin. Infect. Dis. 47, 469–475.

    5. Brandler, S., Ruffié, C., Combredet, C., Brault, J.-B., Najburg, V., Prevost, M.-C., Habel, A., Tauber, E., Desprès, P., Tangy, F., 2013. A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine 31, 3718–3725.

    6. Broeckel, R.M., Haese, N., Ando, T., Dmitriev, I., Kreklywich, C.N., Powers, J., Denton, M., Smith, P., Morrison, T.E., Heise, M., DeFilippis, V., Messaoudi, I., Curiel, D.T., Streblow, D.N., 2019. Vaccine-induced skewing of T cell responses protects against chikungunya virus disease. Front. Immunol. 10, 2563.

    7. Burrack, K.S., Montgomery, S.A., Homann, D., Morrison, T.E., 2015. CD8+T cells control Ross River virus infection in musculoskeletal tissues of infected mice. J. Immunol. 194, 678–689.

    8. Chang, L.-J., Dowd, K.A., Mendoza, F.H., Saunders, J.G., Sitar, S., Plummer, S.H., Yamshchikov, G., Sarwar, U.N., Hu, Z., Enama, M.E., Bailer, R.T., Koup, R.A., Schwartz, R.M., Akahata, W., Nabel, G.J., Mascola, J.R., Pierson, T.C., Graham, B.S., Ledgerwood, J.E., Team, tVS., 2014. Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. Lancet. https:// doi.org/10.1016/S0140-6736(14)61185-52046-2052.

    9. Chopra, A., Anuradha, V., Ghorpade, R., Saluja, M., 2011. Acute Chikungunya and persistent musculoskeletal pain following the 2006 Indian epidemic: a 2-year prospective rural community study. Epidemiol. Infect. 140, 842–850.

    10. Chu, H., Das, S.C., Fuchs, J.F., Suresh, M., Weaver, S.C., Stinchcomb, D.T., Partidos, C.D., Osorio, J.E., 2013. Deciphering the protective role of adaptive immunity to CHIKV/IRES a novel candidate vaccine against Chikungunya in the A129 mouse model. Vaccine 31, 3353–3360.

    11. DeZure, A.D., Berkowitz, N.M., Graham, B.S., Ledgerwood, J.E., 2016. Whole-inactivated and virus-like particle vaccine strategies for chikungunya virus. JID (J. Infect. Dis.) 214, S497–S499.

    12. ECDC, 2020. Communicable Disease Threats Report, 14- 20 June 2020, Week 25. Chikungunya and Dengue. Multistate (World). Monitoring global outbreaks. https://www.ecdc.europa.eu/en/publications-data/communicable-disease-threats-report-14-20-june-2020-week-25.

    13. Edelman, R., Tacket, C.O., Wasserman, S.S., Bodison, S.A., Perry, J.G., Mangiafico, J.A., 2000. Phase II safety and immunogenicity study of live Chikungunya virus vaccine TSI-GSD-218. Am. J. Trop. Med. Hyg. 62, 681–685.

    14. Fox, J.M., Long, F., Edeling, M.A., Lin, H., van Duijl-Richter, M.K.S., Fong, R.H., Kahle, K.M., Smit, J.M., Jin, J., Simmons, G., Doranz, B.J., Crowe, J.E., Fremont, D.H., Rossmann, M.G., Diamond, M.S., 2015. Broadly neutralizing alphavirus antibodies bind an epitope on E2 and inhibit entry and egress. Cell 163, 1095–1107.

    15. Gwendolyn, K., Binder, D.E.G., 2001. Interferon-gamma-Mediated site-specific clearance of alphavirus from CNS neurons. Science 293, 303–306.

    16. Hallengard, D., Kakoulidou, M., Lulla, A., Kummerer, B.M., Johansson, D.X., Mutso, M., Lulla, V., Fazakerley, J.K., Roques, P., Le Grand, R., Merits, A., Liljestrom, P., 2014a. Novel attenuated Chikungunya vaccine candidates elicit protective immunity in C57BL/6 mice. J. Virol. 88, 2858–2866.

    17. Hallengard, D., Lum, F.M., Kummerer, B.M., Lulla, A., Lulla, V., Garcia-Arriaza, J., Fazakerley, J.K., Roques, P., Le Grand, R., Merits, A., Ng, L.F., Esteban, M., Liljestrom, P., 2014b. Prime-boost immunization strategies against Chikungunya virus. J. Virol. 88, 13333–13343.

    18. Khan, M., Dhanwani, R., Rao, P.V., Parida, M., 2012. Subunit vaccine formulations based on recombinant envelope proteins of Chikungunya virus elicit balanced Th1/Th2 response and virus-neutralizing antibodies in mice. Virus Res. 167, 236–246.

    19. Kim, D.Y., Atasheva, S., Foy, N.J., Wang, E., Frolova, E.I., Weaver, S., Frolov, I., 2011. Design of chimeric alphaviruses with a programmed, attenuated, cell type-restricted phenotype. J. Virol. 85, 4363–4376.

    20. Kumar, M., Sudeep, A.B., Arankalle, V.A., 2012. Evaluation of recombinant E2 proteinbased and whole-virus inactivated candidate vaccines against chikungunya virus. Vaccine 30, 6142–6149.

    21. Li, L., Jose, J., Xiang, Y., Kuhn, R.J., Rossmann, M.G., 2010. Structural changes of envelope proteins during alphavirus fusion. Nature 468, 705–708.

    22. Lum, F.-M., Teo, T.-H., Lee, W.W.L., Kam, Y.-W., Rénia, L., Ng, L.F.P., 2013. An essential role of antibodies in the control of chikungunya virus infection. J. Immunol. 190, 6295–6302.

    23. Mallilankaraman, K., Shedlock, D.J., Bao, H., Kawalekar, O.U., Fagone, P., Ramanathan, A.A., Ferraro, B., Stabenow, J., Vijayachari, P., Sundaram, S.G., Muruganandam, N., Sarangan, G., Srikanth, P., Khan, A.S., Lewis, M.G., Kim, J.J., Sardesai, N.Y., Muthumani, K., Weiner, D.B., 2011. A DNA vaccine against chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates. PLoS Neglected Trop. Dis. 5, e928.

    24. Masrinoul, P., Puiprom, O., Tanaka, A., Kuwahara, M., Chaichana, P., Ikuta, K., Ramasoota, P., Okabayashi, T., 2014. Monoclonal antibody targeting chikungunya virus envelope 1 protein inhibits virus release. Virology 464–465, 111–117.

    25. Metza, S.W., Martinab, B.E., Pvd, Doelb, Geertsemaa, C., Osterhausb, A.D., Vlaka, J.M., Pijlman, G.P., 2013. Chikungunya virus-like particles are more immunogenic in a lethal AG129 mouse model compared to glycoprotein E1 or E2 subunits. Vaccine.https://doi.org/10.1016/j.vaccine.2013.09.0456092-6096.

    26. Muthumani, K., Block, P., Flingai, S., Muruganantham, N., Chaaithanya, I.K., Tingey, C., Wise, M., Reuschel, E.L., Chung, C., Muthumani, A., Sarangan, G., Srikanth, P., Khan, A.S., Vijayachari, P., Sardesai, N.Y., Kim, J.J., Ugen, K.E., Weiner, D.B., 2016. Rapid and long-term immunity elicited by DNA-encoded antibody prophylaxis and DNA vaccination against chikungunya virus. JID (J. Infect. Dis.) 214, 369–378.

    27. PAHO, 2021. Cases of Chikungunya Virus Disease by Contury or Territory Cumulative Cases. https://www3.paho.org/data/index.php/en/mnu-topics/chikv-en/550-chik v-weekly-en.html.

    28. Polack, F.P., Thomas, S.J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J.L., Perez Marc, G., Moreira, E.D., Zerbini, C., Bailey, R., Swanson, K.A., Roychoudhury, S., Koury, K., Li, P., Kalina, W.V., Cooper, D., Frenck Jr., R.W., Hammitt, L.L., Tureci, O., Nell, H., Schaefer, A., Unal, S., Tresnan, D.B., Mather, S., Dormitzer, P.R., Sahin, U., Jansen, K.U., Gruber, W.C., Group, C.C.T., 2020. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615.

    29. Pollard, C., Rejman, J., De Haes, W., Verrier, B., Van Gulck, E., Naessens, T., De Smedt, S., Bogaert, P., Grooten, J., Vanham, G., De Koker, S., 2013. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol. Ther. 21, 251–259.

    30. Powers Acb, Ann M., Tesh, Robert B., Weaver, Scott C., 2000. Re-emergence of chikungunya and o’nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J. Gen. Virol. 81, 471–479.

    31. Doel, P.V.D., Volz, A., Roose, J.M., Sewbalaksing, V.D., Pijlman, G.P., Iv, Middelkoop, Duiverman, V., Evd, Wetering, Sutter, G., Osterhaus, A.D.M.E., Martina, B.E.E., 2014. Recombinant modified vaccinia virus Ankara expressing glycoprotein E2 of Chikungunya virus protects AG129 mice against lethal challenge. PLoS Neglected Trop. Dis. 8, e3101.

    32. Ren, H., Wang, G., Wang, S., Chen, H., Chen, Z., Hu, H., Cheng, G., Zhou, P., 2016. Crossprotection of newly emerging HPAI H5 viruses by neutralizing human monoclonal antibodies: a viable alternative to oseltamivir. mAbs 8, 1156–1166.

    33. Richner, J.M., Himansu, S., Dowd, K.A., Butler, S.L., Salazar, V., Fox, J.M., Julander, J.G., Tang, W.W., Shresta, S., Pierson, T.C., Ciaramella, G., Diamond, M.S., 2017. Modified mRNA vaccines protect against Zika virus infection. Cell 168, 1114–1125 e1110.

    34. Robinson, M.C., 1955. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–53. I. Clinical features. Trans. R. Soc. Trop. Med. Hyg. 49, 28–32.

    35. Sahin, U., Kariko, K., Tureci, O., 2014. mRNA-based therapeutics–developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780.

    36. Sahin, U., Muik, A., Derhovanessian, E., Vogler, I., Kranz, L.M., Vormehr, M., Baum, A., Pascal, K., Quandt, J., Maurus, D., Brachtendorf, S., Lorks, V., Sikorski, J., Hilker, R., Becker, D., Eller, A.K., Grutzner, J., Boesler, C., Rosenbaum, C., Kuhnle, M.C., Luxemburger, U., Kemmer-Bruck, A., Langer, D., Bexon, M., Bolte, S., Kariko, K., Palanche, T., Fischer, B., Schultz, A., Shi, P.Y., Fontes-Garfias, C., Perez, J.L., Swanson, K.A., Loschko, J., Scully, I.L., Cutler, M., Kalina, W., Kyratsous, C.A., Cooper, D., Dormitzer, P.R., Jansen, K.U., Tureci, O., 2020. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 586, 594–599.

    37. Smith, S.A., Silva, L.A., Fox, J.M., Flyak, A.I., Kose, N., Sapparapu, G., Khomandiak, S., Ashbrook, A.W., Kahle, K.M., Fong, R.H., Swayne, S., Doranz, B.J., McGee, C.E., Heise, M.T., Pal, P., Brien, J.D., Austin, S.K., Diamond, M.S., Dermody, T.S., Crowe Jr., J.E., 2015. Isolation and characterization of broad and ultrapotent human monoclonal antibodies with therapeutic activity against chikungunya virus. Cell Host Microbe 18, 86–95.

    38. Song, H., Zhao, Z., Chai, Y., Jin, X., Li, C., Yuan, F., Liu, S., Gao, Z., Wang, H., Song, J., Vazquez, L., Zhang, Y., Tan, S., Morel, C.M., Yan, J., Shi, Y., Qi, J., Gao, F., Gao, G.F., 2019. Molecular basis of arthritogenic alphavirus receptor MXRA8 binding to chikungunya virus envelope protein. Cell 177, 1714–1724 e1712.

    39. Suhrbier, A., 2019. Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat. Rev. Rheumatol. 15, 597–611.

    40. Teo, T.H., Lum, F.M., Claser, C., Lulla, V., Lulla, A., Merits, A., Renia, L., Ng, L.F., 2013. A pathogenic role for CD4+ T cells during Chikungunya virus infection in mice. J. Immunol. 190, 259–269.

    41. Teo, T.-H., Chan, Y.-H., Lee, W.W.L., Lum, F.-M., Amrun, S.N., Her, Z., Rajarethinam, R., Merits, A., Rötzschke, O., Rénia, L., Ng, L.F.P., 2017. Fingolimod treatment abrogates chikungunya virus–induced arthralgia. Sci. Transl. Med. 9 (375), eaal1333.

    42. Thiberville, S.D., Moyen, N., Dupuis-Maguiraga, L., Nougairede, A., Gould, E.A., Roques, P., de Lamballerie, X., 2013. Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy. Antivir. Res. 99, 345–370.

    43. Tiwari, M., Parida, M., Santhosh, S.R., Khan, M., Dash, P.K., Rao, P.V.L., 2009. Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of Chikungunya virus. Vaccine 27, 2513–2522.

    44. Tretyakova, I., Hearn, J., Wang, E., Weaver, S., Pushko, P., 2014. DNA vaccine initiates replication of live attenuated chikungunya virus in vitro and elicits protective immune response in mice. J. Infect. Dis. 209, 1882–1890.

    45. Tsetsarkin, K.A., Vanlandingham, D.L., McGee, C.E., Higgs, S., 2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 3, e201.

    46. Tsetsarkin, K.A., McGee, C.E., Volk, S.M., Vanlandingham, D.L., Weaver, S.C., Higgs, S., 2009. Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes. PLoS One 4, e6835.

    47. Vogel, A.B., Lambert, L., Kinnear, E., Busse, D., Erbar, S., Reuter, K.C., Wicke, L., Perkovic, M., Beissert, T., Haas, H., Reece, S.T., Sahin, U., Tregoning, J.S., 2018. Selfamplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol. Ther. 26, 446–455.

    48. Volk, S.M., Chen, R., Tsetsarkin, K.A., Adams, A.P., Garcia, T.I., Sall, A.A., Nasar, F., Schuh, A.J., Holmes, E.C., Higgs, S., Maharaj, P.D., Brault, A.C., Weaver, S.C., 2010. Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J. Virol. 84, 6497–6504.

    49. Voss, J.E., Vaney, M.C., Duquerroy, S., Vonrhein, C., Girard-Blanc, C., Crublet, E., Thompson, A., Bricogne, G., Rey, F.A., 2010. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468, 709–712.

    50. Weaver, S.C., Weber, C., Berberich, E., von Rhein, C., Henß, L., Hildt, E., Schnierle, B.S., 2017. Identification of functional determinants in the chikungunya virus E2 protein. PLoS Neglected Trop. Dis. 11, e0005318.

    51. Zhang, M., Sun, J., Li, M., Jin, X., 2020. Modified mRNA-LNP vaccines confer protection against experimental DENV-2 infection in mice. Molecular Therapy - Methods & Clinical Development. 18, 702–712.

  • 加载中
  • 10.1016j.virs.2022.01.032-ESM.docx

Article Metrics

Article views(5100) PDF downloads(19) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    An mRNA vaccine encoding Chikungunya virus E2-E1 protein elicits robust neutralizing antibody responses and CTL immune responses

      Corresponding author: Zhihua Kou, kouzhihua@shphc.org.cn
      Corresponding author: Yu Wei, yuwei@ips.ac.cn
      Corresponding author: Xia Jin, jinxia@serum-china.com.cn
    • a CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
    • b University of Chinese Academy of Sciences, Beijing 100049, China
    • c Shanghai Public Health Clinical Center, Fudan University, Shanghai 200540, China
    • d Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China

    Abstract: Arthropod-borne chikungunya virus (CHIKV) infection can cause a debilitating arthritic disease in human. However, there are no specific antiviral drugs and effective licensed vaccines against CHIKV available for clinical use. Here, we developed an mRNA-lipid nanoparticle (mRNA-LNP) vaccine expressing CHIKV E2-E1 antigen, and compared its immunogenicity with soluble recombinant protein sE2-E1 antigen expressed in S2 cells. For comparison, we first showed that recombinant protein antigens mixed with aluminum adjuvant elicit strong antigen-specific humoral immune response and a moderate cellular immune response in C57BL/6 mice. Moreover, sE2-E1 vaccine stimulated 12-23 folds more neutralizing antibodies than sE1 vaccine and sE2 vaccine. Significantly, when E2-E1 gene was delivered by an mRNA-LNP vaccine, not only the better magnitude of neutralizing antibody responses was induced, but also greater cellular immune responses were generated, especially for CD8+ T cell responses. Moreover, E2-E1-LNP induced CD8+ T cells can perform cytotoxic effect in vivo. Considering its better immunogenicity and convenience of preparation, we suggest that more attention should be placed to develop CHIKV E2-E1-LNP mRNA vaccine.

    Reference (51) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return