Min Li, Hui Wang, Long Chen, Genglin Guo, Pei Li, Jiale Ma, Rong Chen, Hong Du, Yuqing Liu and Wei Zhang. Identification of a phage-derived depolymerase specific for KL47 capsule of Klebsiella pneumoniae and its therapeutic potential in mice[J]. Virologica Sinica, 2022, 37(4): 538-546. doi: 10.1016/j.virs.2022.04.005
Citation: Min Li, Hui Wang, Long Chen, Genglin Guo, Pei Li, Jiale Ma, Rong Chen, Hong Du, Yuqing Liu, Wei Zhang. Identification of a phage-derived depolymerase specific for KL47 capsule of Klebsiella pneumoniae and its therapeutic potential in mice .VIROLOGICA SINICA, 2022, 37(4) : 538-546.  http://dx.doi.org/10.1016/j.virs.2022.04.005

对肺炎克雷伯菌KL47型荚膜特异的噬菌体源解聚酶的鉴定及其对小鼠的治疗潜力

  • 通讯作者: 张炜, vszw@njau.edu.cn
  • 收稿日期: 2021-10-14
    录用日期: 2022-04-28
  • 肺炎克雷伯菌是引起全球多重耐药感染的主要病原体之一。因此,迫切需要制定有效的防控策略。噬菌体源解聚酶常存在于尾纤维蛋白或尾刺蛋白中,据报道具有抗生物被膜活性。本研究中,从污水中分离的噬菌体P560对KL47型肺炎克雷伯菌具有特异性,其噬菌斑周围扩大的晕圈暗示P560可能编码一种解聚酶。从噬菌体P560中预测到解聚酶ORF43,命名为P560dep,我们对其进行了表达、纯化、鉴定以及评估酶活性和特异性。结果表明荚膜解聚酶P560dep可以消化KL47型肺炎克雷伯菌表面的荚膜多糖,并且P560dep的解聚谱与噬菌体P560的宿主范围相匹配,即KL47型肺炎克雷伯菌。结晶紫染色结果显示,P560dep能显著抑制生物被膜的形成。此外,腹腔注射单剂量(50µg/只)的解聚酶P560dep可保护90%-100%的小鼠免受KL47型耐碳青霉烯类肺炎克雷格菌感染前后的致命攻击。感染KL47型肺炎克雷伯菌的小鼠经P560dep治疗后肺、肝组织病理改变均有所减轻。这也证明解聚酶P560dep作为一种有吸引力的抗毒力制剂代表了一种有前景的抗菌治疗工具。

Identification of a phage-derived depolymerase specific for KL47 capsule of Klebsiella pneumoniae and its therapeutic potential in mice

  • Corresponding author: Wei Zhang, vszw@njau.edu.cn
  • Received Date: 14 October 2021
    Accepted Date: 28 April 2022
  • Klebsiella pneumoniae is one of the major pathogens causing global multidrug-resistant infections. Therefore, strategies for preventing and controlling the infections are urgently needed. Phage depolymerase, often found in the tail fiber protein or the tail spike protein, is reported to have antibiofilm activity. In this study, phage P560 isolated from sewage showed specific for capsule locus type KL47 K. pneumoniae, and the enlarged haloes around plaques indicated that P560 encoded a depolymerase. The capsule depolymerase, ORF43, named P560dep, derived from phage P560 was expressed, purified, characterized and evaluated for enzymatic activity as well as specificity. We reported that the capsule depolymerase P560dep, can digest the capsule polysaccharides on the surface of KL47 type K. pneumoniae, and the depolymerization spectrum of P560dep matched to the host range of phage P560, KL47 K. pneumoniae. Crystal violet staining assay showed that P560dep was able to significantly inhibit biofilm formation. Further, a single dose (50 μg/mouse) of depolymerase intraperitoneal injection protected 90%–100% of mice from lethal challenge before or after infection by KL47 carbapenem-resistant K. pneumoniae. And pathological changes were alleviated in lung and liver of mice infected by KL47 type K. pneumoniae. It is demonstrated that depolymerase P560dep as an attractive antivirulence agent represents a promising tool for antimicrobial therapy.

  • 加载中
    1. Adams, M., 1959. Bacteriophage. NY: Interscience Publishers, New York. Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., Meyer, F., Olsen, G.J., Olson, R., Osterman, A.L., Overbeek, R.A., McNeil, L.K., Paarmann, D., Paczian, T., Parrello, B., Pusch, G.D., Reich, C., Stevens, R., Vassieva, O., Vonstein, V., Wilke, A., Zagnitko, O., 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 9, 75.

    2. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A., Pevzner, P.A., 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477.

    3. Bansal, S., Harjai, K., Chhibber, S., 2014. Depolymerase improves gentamicin efficacy during Klebsiella pneumoniae induced murine infection. BMC Infect. Dis. 14, 456.

    4. Blundell-Hunter, G., Enright, M.C., Negus, D., Dorman, M.J., Beecham, G.E., Pickard, D.J., Wintachai, P., Voravuthikunchai, S.P., Thomson, N.R., Taylor, P.W., 2021. Characterisation of bacteriophage-encoded depolymerases selective for key Klebsiella pneumoniae capsular exopolysaccharides. Front. Cell. Infect. Microbiol. 11, 686090.

    5. Brisse, S., Passet, V., Haugaard, A.B., Babosan, A., Kassis-Chikhani, N., Struve, C., Decre, D., 2013. Wzi Gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. J. Clin. Microbiol. 51, 4073–4078.

    6. CDC, 2019. Antibiotic Resistance Threats in the United States, 2019. U.S. Department of Health and Human Services, CDC, Atlanta, GA. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf.

    7. Chai, Z., Wang, J., Tao, S., Mou, H., 2014. Application of bacteriophage-borne enzyme combined with chlorine dioxide on controlling bacterial biofilm. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 59, 1159–1165.

    8. Chen, C.M., Guo, M.K., Ke, S.C., Lin, Y.P., Li, C.R., Vy Nguyen, H.T., Wu, L.T., 2018a. Emergence and nosocomial spread of ST11 carbapenem-resistant Klebsiella pneumoniae co-producing OXA-48 and KPC-2 in a regional hospital in Taiwan. J. Med. Microbiol. 67, 957–964.

    9. Chen, Y., Li, X., Wang, S., Guan, L., Li, X., Hu, D., Gao, D., Song, J., Chen, H., Qian, P., 2020. A novel tail-associated O91-specific polysaccharide depolymerase from a podophage reveals lytic efficacy of Shiga toxin-producing Escherichia coli. Appl. Environ. Microbiol. 86.

    10. Chen, Y., Sun, E., Yang, L., Song, J., Wu, B., 2018b. Therapeutic application of bacteriophage PHB02 and its putative depolymerase against Pasteurella multocida capsular type A in mice. Front. Microbiol. 9, 1678.

    11. Clegg, S., Murphy, C.N., 2016. Epidemiology and virulence of Klebsiella pneumoniae. Microbiol. Spectr. 4:UTI-0005-2012.

    12. Diancourt, L., Passet, V., Verhoef, J., Grimont, P.A., Brisse, S., 2005. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 43, 4178–4182.

    13. Domenico, P., Schwartz, S., Cunha, B.A., 1989. Reduction of capsular polysaccharide production in Klebsiella pneumoniae by sodium salicylate. Infect. Immun. 57, 3778–3782.

    14. Drulis-Kawa, Z., Majkowska-Skrobek, G., Maciejewska, B., 2015. Bacteriophages and phage-derived proteins–application approaches. Curr. Med. Chem. 22, 1757–1773.

    15. Dunn, J.J., Studier, F.W., 1983. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166, 477–535.

    16. Entenza, J.M., Loeffler, J.M., Grandgirard, D., Fischetti, V.A., Moreillon, P., 2005. Therapeutic effects of bacteriophage Cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats. Antimicrob. Agents Chemother. 49, 4789–4792.

    17. Flemming, H.C., Wingender, J., 2010. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633.

    18. Gilmer, D.B., Schmitz, J.E., Euler, C.W., Fischetti, V.A., 2013. Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 57, 2743–2750.

    19. Gorodnichev, R.B., Volozhantsev, N.V., Krasilnikova, V.M., Bodoev, I.N., Kornienko, M.A., Kuptsov, N.S., Popova, A.V., Makarenko, G.I., Manolov, A.I., Slukin, P.V., Bespiatykh, D.A., Verevkin, V.V., Denisenko, E.A., Kulikov, E.E., Veselovsky, V.A., Malakhova, M.V., Dyatlov, I.A., Ilina, E.N., Shitikov, E.A., 2021. Novel Klebsiella pneumoniae K23-specific bacteriophages from different families: similarity of depolymerases and their therapeutic potential. Front. Microbiol. 12, 669618.

    20. Gu, D., Dong, N., Zheng, Z., Lin, D., Huang, M., Wang, L., Chan, E.W., Shu, L., Yu, J., Zhang, R., Chen, S., 2018. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect. Dis. 18, 37–46.

    21. Hao, G., Shu, R., Ding, L., Chen, X., Miao, Y., Wu, J., Zhou, H., Wang, H., 2021. Bacteriophage SRD2021 recognizing capsular polysaccharide shows therapeutic potential in serotype K47 Klebsiella pneumoniae infections. Antibiotics (Basel) 10, 894.

    22. Hsieh, P.F., Lin, H.H., Lin, T.L., Chen, Y.Y., Wang, J.T., 2017. Two T7-like bacteriophages, K5-2 and K5-4, each encodes two capsule depolymerases: isolation and functional characterization. Sci. Rep. 7, 4624.

    23. Hsu, C.R., Lin, T.L., Pan, Y.J., Hsieh, P.F., Wang, J.T., 2013. Isolation of a bacteriophage specific for a new capsular type of Klebsiella pneumoniae and characterization of its polysaccharide depolymerase. PLoS One 8, e70092.

    24. Huang, Y.H., Chou, S.H., Liang, S.W., Ni, C.E., Lin, Y.T., Huang, Y.W., Yang, T.C., 2018. Emergence of an XDR and carbapenemase-producing hypervirulent Klebsiella pneumoniae strain in Taiwan. J. Antimicrob. Chemother. 73, 2039–2046.

    25. Kaspar, U., de Haro Sautto, J.A., Molinaro, S., Peters, G., Idelevich, E.A., Becker, K., 2018. The novel phage-derived antimicrobial agent HY-133 is active against livestockassociated methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 62, e00385–e00418.

    26. Kaszowska, M., Majkowska-Skrobek, G., Markwitz, P., Lood, C., Jachymek, W., Maciejewska, A., Lukasiewicz, J., Drulis-Kawa, Z., 2021. The mutation in wbaP cps gene cluster selected by phage-borne depolymerase abolishes capsule production and diminishes the virulence of Klebsiella pneumoniae. Int. J. Mol. Sci. 22.

    27. Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., Sternberg, M.J., 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858.

    28. Labrie, S.J., Samson, J.E., Moineau, S., 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327.

    29. Lai, W.C.B., Chen, X., Ho, M.K.Y., Xia, J., Leung, S.S.Y., 2020. Bacteriophage-derived endolysins to target gram-negative bacteria. Int. J. Pharm. 589, 119833.

    30. Li, B., Zhao, Y., Liu, C., Chen, Z., Zhou, D., 2014. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol. 9, 1071–1081.

    31. Li, M., Guo, M., Chen, L., Zhu, C., Xiao, Y., Li, P., Guo, H., Chen, L., Zhang, W., Du, H., 2020a. Isolation and characterization of novel lytic bacteriophages infecting epidemic carbapenem-resistant Klebsiella pneumoniae strains. Front. Microbiol. 11, 1554.

    32. Li, M., Li, P., Chen, L., Guo, G., Xiao, Y., Chen, L., Du, H., Zhang, W., 2021. Identification of a phage-derived depolymerase specific for KL64 capsule of Klebsiella pneumoniae and its anti-biofilm effect. Virus Gene. 57, 434–442.

    33. Li, M., Xiao, Y., Li, P., Wang, Z., Qi, W., Qi, Z., Chen, L., Du, H., Zhang, W., 2020b. Characterization and genome analysis of Klebsiella phage P509, with lytic activity against clinical carbapenem-resistant Klebsiella pneumoniae of the KL64 capsular type. Arch. Virol. 165, 2799–2806.

    34. Li, Q., Fu, Y., He, Y., Zhang, Y., Qian, Y., Yu, Y., Yao, H., Lu, C., Zhang, W., 2017. Fibronectin-/fibrinogen-binding protein (FBPS) is not a critical virulence factor for the Streptococcus suis serotype 2 strain ZY05719. Vet. Microbiol. 208, 38–46.

    35. Lim, J.A., Shin, H., Heu, S., Ryu, S., 2014. Exogenous lytic activity of SPN9CC endolysin against gram-negative bacteria. J. Microbiol. Biotechnol. 24, 803–811.

    36. Lin, H., Paff, M.L., Molineux, I.J., Bull, J.J., 2017. Therapeutic application of phage capsule depolymerases against K1, K5, and K30 capsulated E. coli in mice. Front. Microbiol. 8, 2257.

    37. Lin, T.L., Hsieh, P.F., Huang, Y.T., Lee, W.C., Tsai, Y.T., Su, P.A., Pan, Y.J., Hsu, C.R., Wu, M.C., Wang, J.T., 2014. Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. J. Infect. Dis. 210, 1734–1744.

    38. Liu, Y., Leung, S.S.Y., Guo, Y., Zhao, L., Jiang, N., Mi, L., Li, P., Wang, C., Qin, Y., Mi, Z., Bai, C., Gao, Z., 2019. Corrigendum: the capsule depolymerase Dpo48 rescues Galleria mellonella and mice from acinetobacter baumannii systemic infections. Front. Microbiol. 10, 942.

    39. Liu, Y., Leung, S.S.Y., Huang, Y., Guo, Y., Jiang, N., Li, P., Chen, J., Wang, R., Bai, C., Mi, Z., Gao, Z., 2020. Identification of two depolymerases from phage IME205 and their antivirulent functions on K47 capsule of Klebsiella pneumoniae. Front.Microbiol. 11, 218.

    40. Majkowska-Skrobek, G., Latka, A., Berisio, R., Maciejewska, B., Squeglia, F., Romano, M., Lavigne, R., Struve, C., Drulis-Kawa, Z., 2016. Capsule-targeting depolymerase, derived from Klebsiella KP36 phage, as a tool for the development of anti-virulent strategy. Viruses 8, 324.

    41. Majkowska-Skrobek, G., Latka, A., Berisio, R., Squeglia, F., Maciejewska, B., Briers, Y., Drulis-Kawa, Z., 2018. Phage-Borne depolymerases decrease Klebsiella pneumoniae resistance to innate defense mechanisms. Front. Microbiol. 9, 2517.

    42. Medrano-Galarza, C., Gibbons, J., Wagner, S., de Passille, A.M., Rushen, J., 2012. Behavioral changes in dairy cows with mastitis. J. Dairy Sci. 95, 6994–7002.

    43. Mirzaei, M.K., Nilsson, A.S., 2015. Correction: isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS One 10, e0127606.

    44. Volozhantsev, N.V., Shpirt, A.M., Borzilov, I.A., Komisarova, V.E., Krasilnikova, M.V., Shashkov, S.A., Verevkin, V.V., Knirel, A.Y., 2020. Characterization and therapeutic potential of bacteriophage-encoded polysaccharide depolymerases with beta galactosidase activity against Klebsiella pneumoniae K57 capsular type. Antibiotics (Basel) 9.

    45. Nelson, D., Loomis, L., Fischetti, V.A., 2001. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. U. S. A. 98, 4107–4112.

    46. Ørskov, I., Fife-Asbury, M.A., 1977. New Klebsiella capsular antigen K82 and the deletion of five of those previously assigned. Int. J. Syst. Bacteriol. 27, 386–387.

    47. Pan, Y.J., Fang, H.C., Yang, H.C., Lin, T.L., Hsieh, P.F., Tsai, F.C., Keynan, Y., Wang, J.T., 2008. Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. J. Clin. Microbiol. 46, 2231–2240.

    48. Pan, Y.J., Lin, T.L., Chen, C.C., Tsai, Y.T., Cheng, Y.H., Chen, Y.Y., Hsieh, P.F., Lin, Y.T., Wang, J.T., 2017. Klebsiella phage PhiK64-1 encodes multiple depolymerases for multiple host capsular types. J. Virol. 91, e02457–e02516.

    49. Pan, Y.J., Lin, T.L., Chen, Y.H., Hsu, C.R., Hsieh, P.F., Wu, M.C., Wang, J.T., 2013. Capsular types of Klebsiella pneumoniae revisited by wzc sequencing. PLoS One 8, e80670.

    50. Pan, Y.J., Lin, T.L., Chen, Y.Y., Lai, P.H., Tsai, Y.T., Hsu, C.R., Hsieh, P.F., Lin, Y.T., Wang, J.T., 2019. Identification of three podoviruses infecting Klebsiella encoding capsule depolymerases that digest specific capsular types. Microb. Biotechnol. 12, 472–486.

    51. Pan, Y.J., Lin, T.L., Lin, Y.T., Su, P.A., Chen, C.T., Hsieh, P.F., Hsu, C.R., Chen, C.C., Hsieh, Y.C., Wang, J.T., 2015. Identification of capsular types in carbapenemresistant Klebsiella pneumoniae strains by wzc sequencing and implications for capsule depolymerase treatment. Antimicrob. Agents Chemother. 59, 1038–1047.

    52. Park, D.W., Park, J.H., 2021. Characterization of a novel phage depolymerase specific to Escherichia coli O157:H7 and biofilm control on abiotic surfaces. J. Microbiol. 59, 1002–1009.

    53. Pitout, J.D., Nordmann, P., Poirel, L., 2015. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob. Agents Chemother. 59, 5873–5884.

    54. Podschun, R., Ullmann, U., 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11, 589–603.

    55. Rice, C.J., Kelly, S.A., O’Brien, S.C., Melaugh, E.M., Ganacias, J.C.B., Chai, Z.H., Gilmore, B.F., Skvortsov, T., 2021. Novel phage-derived depolymerase with activity against Proteus mirabilis biofilms. Microorganisms 9, 2172.

    56. Roach, D.R., Donovan, D.M., 2015. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage 5, e1062590.

    57. Sambrook, J., Russell, D.W., 2006. Precipitation of bacteriophage lambda particles from large-scale lysates. CSH Protoc. 2006, pdb.prot3966.

    58. Shahed-Al-Mahmud, M., Roy, R., Sugiokto, F.G., Islam, M.N., Lin, M.D., Lin, L.C., Lin, N.T., 2021. Phage phiAB6-borne depolymerase combats acinetobacter baumannii biofilm formation and infection. Antibiotics (Basel) 10, 279.

    59. Solovieva, E.V., Myakinina, V.P., Kislichkina, A.A., Krasilnikova, V.M., Verevkin, V.V., Mochalov, V.V., Lev, A.I., Fursova, N.K., Volozhantsev, N.V., 2018. Comparative genome analysis of novel Podoviruses lytic for hypermucoviscous Klebsiella pneumoniae of K1, K2, and K57 capsular types. Virus Res. 243, 10–18.

    60. Totte, J.E.E., van Doorn, M.B., Pasmans, S., 2017. Successful treatment of chronic Staphylococcus aureus-related dermatoses with the topical endolysin staphefekt SA.100: a report of 3 cases. Case Rep. Dermatol. 9, 19–25.

    61. Ventola, C.L., 2015. The antibiotic resistance crisis: part 1: causes and threats. P T 40, 277–283.

    62. Walker, P.J., Siddell, S.G., Lefkowitz, E.J., Mushegian, A.R., Adriaenssens, E.M., AlfenasZerbini, P., Davison, A.J., Dempsey, D.M., Dutilh, B.E., Garcia, M.L., Harrach, B., Harrison, R.L., Hendrickson, R.C., Junglen, S., Knowles, N.J., Krupovic, M., Kuhn, J.H., Lambert, A.J., Lobocka, M., Nibert, M.L., Oksanen, H.M., Orton, R.J., Robertson, D.L., Rubino, L., Sabanadzovic, S., Simmonds, P., Smith, D.B., Suzuki, N., Van Dooerslaer, K., Vandamme, A.M., Varsani, A., Zerbini, F.M., 2021. Changes to virus taxonomy and to the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2021). Arch. Virol. 166, 2633–2648.

    63. Wang, C., Li, P., Niu, W., Yuan, X., Liu, H., Huang, Y., An, X., Fan, H., Zhangxiang, L., Mi, L., Zheng, J., Liu, Y., Tong, Y., Mi, Z., Bai, C., 2019. Protective and therapeutic application of the depolymerase derived from a novel KN1 genotype of Klebsiella pneumoniae bacteriophage in mice. Res. Microbiol. 170, 156–164.

    64. Wang, C., Li, P., Zhu, Y., Huang, Y., Gao, M., Yuan, X., Niu, W., Liu, H., Fan, H., Qin, Y., Tong, Y., Mi, Z., Bai, C., 2020. Identification of a novel acinetobacter baumannii phage-derived depolymerase and its therapeutic application in mice. Front. Microbiol. 11, 1407.

    65. Wu, M.C., Lin, T.L., Hsieh, P.F., Yang, H.C., Wang, J.T., 2011. Isolation of genes involved in biofilm formation of a Klebsiella pneumoniae strain causing pyogenic liver abscess. PLoS One 6, e23500.

    66. Wu, Y., Wang, R., Xu, M., Liu, Y., Zhu, X., Qiu, J., Liu, Q., He, P., Li, Q., 2019. A novel polysaccharide depolymerase encoded by the phage SH-KP152226 confers specific activity against multidrug-resistant Klebsiella pneumoniae via biofilm degradation. Front. Microbiol. 10, 2768.

    67. Xu, L., Sun, X., Ma, X., 2017. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann. Clin. Microbiol. Antimicrob. 16, 18.

    68. Yang, Q., Jia, X., Zhou, M., Zhang, H., Yang, W., Kudinha, T., Xu, Y., 2020. Emergence of ST11-K47 and ST11-K64 hypervirulent carbapenem-resistant Klebsiella pneumoniae in bacterial liver abscesses from China: a molecular, biological, and epidemiological study. Emerg. Microb. Infect. 9, 320–331.

    69. Yu, F., Hu, L., Zhong, Q., Hang, Y., Liu, Y., Hu, X., Ding, H., Chen, Y., Xu, X., Fang, X., Yu, F., 2019. Dissemination of Klebsiella pneumoniae ST11 isolates with carbapenem resistance in integrated and emergency intensive care units in a Chinese tertiary hospital. J. Med. Microbiol. 68, 882–889.

    70. Zhang, R., Liu, L., Zhou, H., Chan, E.W., Li, J., Fang, Y., Li, Y., Liao, K., Chen, S., 2017. Nationwide surveillance of clinical carbapenem-resistant enterobacteriaceae (CRE) strains in China. EBioMedicine 19, 98–106.

  • 加载中
  • 10.1016j.virs.2022.04.005-ESM.docx

Article Metrics

Article views(2236) PDF downloads(13) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Identification of a phage-derived depolymerase specific for KL47 capsule of Klebsiella pneumoniae and its therapeutic potential in mice

      Corresponding author: Wei Zhang, vszw@njau.edu.cn
    • a College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China;
    • b Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China;
    • c MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China;
    • d Department of Clinical Laboratory, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, 215600, China;
    • e Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China;
    • f Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China;
    • g Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China

    Abstract: Klebsiella pneumoniae is one of the major pathogens causing global multidrug-resistant infections. Therefore, strategies for preventing and controlling the infections are urgently needed. Phage depolymerase, often found in the tail fiber protein or the tail spike protein, is reported to have antibiofilm activity. In this study, phage P560 isolated from sewage showed specific for capsule locus type KL47 K. pneumoniae, and the enlarged haloes around plaques indicated that P560 encoded a depolymerase. The capsule depolymerase, ORF43, named P560dep, derived from phage P560 was expressed, purified, characterized and evaluated for enzymatic activity as well as specificity. We reported that the capsule depolymerase P560dep, can digest the capsule polysaccharides on the surface of KL47 type K. pneumoniae, and the depolymerization spectrum of P560dep matched to the host range of phage P560, KL47 K. pneumoniae. Crystal violet staining assay showed that P560dep was able to significantly inhibit biofilm formation. Further, a single dose (50 μg/mouse) of depolymerase intraperitoneal injection protected 90%–100% of mice from lethal challenge before or after infection by KL47 carbapenem-resistant K. pneumoniae. And pathological changes were alleviated in lung and liver of mice infected by KL47 type K. pneumoniae. It is demonstrated that depolymerase P560dep as an attractive antivirulence agent represents a promising tool for antimicrobial therapy.

    Reference (70) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return