. doi: 10.1016/j.virs.2022.08.004
Citation: Jing Xiong, Yanjun Jiang, Jinru Zhang, Yanmeng Chen, Yuan Hu. CK1α upregulates the IFNAR1 expression to prompt the anti-HBV effect of type I IFN in hepatoma carcinoma cells .VIROLOGICA SINICA, 2022, 37(6) : 894-903.  http://dx.doi.org/10.1016/j.virs.2022.08.004

肝癌细胞中CK1α上调IFNAR1的表达,促进I型IFN抑制HBV复制

  • 通讯作者: 胡源, huyuan@cqmu.edu.cn
  • 收稿日期: 2022-01-27
    录用日期: 2022-08-08
  • 酪蛋白激酶1α(CK1α)通过介导I型干扰素受体1(IFNAR1)的磷酸化和降解来应对病毒的感染。但是,CK1α如何调控乙肝病毒(HBV)复制以及IFN-α抗HBV作用的报道较少。本研究表明,在肝癌细胞中,CK1α可以与IFNAR1相互作用。在外源IFN-α抑制HBV过程中,CK1α通过降低IFNAR1的泛素化来增加IFNAR1的丰度水平,进一步促进IFN-α诱导的JAK-STAT信号通路,从而增强IFN-α抑制HBV复制的效应。我们的结果表明宿主因子CK1α促进了IFN-α抑制HBV复制的效应,为提高IFN-α治疗CHB的有效性提供新的思路。

CK1α upregulates the IFNAR1 expression to prompt the anti-HBV effect of type I IFN in hepatoma carcinoma cells

  • Corresponding author: Yuan Hu, huyuan@cqmu.edu.cn
  • Received Date: 27 January 2022
    Accepted Date: 08 August 2022
  • Casein kinase 1α (CK1α) mediates the phosphorylation and degradation of interferon-α/β receptor 1 (IFNAR1) in response to viral infection. However, how CK1α regulates hepatitis B virus (HBV) replication and the anti-HBV effects of IFN-α are less reported. Here we show that CK1α can interact with IFNAR1 in hepatoma carcinoma cells and increased the abundance of IFNAR1 by reducing the ubiquitination levels in the presence of HBV. Furthermore, CK1α promotes the IFN-α triggered JAK-STAT signaling pathway and consequently enhances the antiviral effects of IFN-α against HBV replication. Our results collectively provide evidence that CK1α positively regulates the anti-HBV activity of IFN-α in hepatoma carcinoma cells, which would be a promising therapeutic target to improve the effectiveness of IFN-α therapy to cure CHB.

  • 加载中
    1. Brubaker, S.W.B., Zanoni, K.S., Kagan, I., J. C., 2015. Innate immune pattern recognition:a cell biological perspective. Annu. Rev. Immunol. 33, 257–290.

    2. Buster, E.H., Flink, H.J., Cakaloglu, Y., Simon, K., Trojan, J., Tabak, F., So, T.M., Feinman, S.V., Mach, T., Akarca, U.S., Schutten, M., Tielemans, W., Van Vuuren, A.J., Hansen, B.E., Janssen, H.L., 2008. Sustained HBeAg and HBsAg loss after long-term follow-up of HBeAg-positive patients treated with peginterferon alpha-2b.Gastroenterology 135, 459–467.

    3. Chen, Y., Hu, J., Cai, X., Huang, Y., Zhou, X., Tu, Z., Hu, J., Tavis, J.E., Tang, N., Huang, A., Hu, Y., 2018. APOBEC3B edits HBV DNA and inhibits HBV replication during reverse transcription. Antivir. Res. 149, 16–25.

    4. Chen, Y., Shen, B., Zheng, X., Long, Q., Xia, J., Huang, Y., Cai, X., Wang, D., Chen, J., Tang, N., Huang, A., Hu, Y., 2020. DHX9 interacts with APOBEC3B and attenuates the anti-HBV effect of APOBEC3B. Emerg. Microb. Infect. 9, 366–377.

    5. Cheng, X.,X.Y., Serti, E., Block, Pd, Chung, M., Chayama, K., Rehermann, B., Liang, Tj, 2017. Hepatitis B virus evades innate immunity of hepatocytes but activates cytokine production by macrophages. Hepatology 66, 1779–1793.

    6. Fuchs, S.Y., 2013. Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy. J. Interferon Cytokine Res. 33, 211–225.

    7. Janahi, E.M., McGarvey, M.J., 2013. The inhibition of hepatitis B virus by APOBEC cytidine deaminases. J. Viral Hepat. 20, 821–828.

    8. Jiang, S., Zhang, M., Sun, J., Yang, X., 2018. Casein kinase 1α: biological mechanisms and theranostic potential. Cell Commun. Signal. 16, 23.

    9. Konerman, M.A., Lok, A.S., 2016. Interferon treatment for hepatitis B. Clin. Liver Dis. 20, 645–665.

    10. Kumar, K.G., Krolewski, J.J., Fuchs, S.Y., 2004. Phosphorylation and specific ubiquitin acceptor sites are required for ubiquitination and degradation of the IFNAR1 subunit of type I interferon receptor. J. Biol. Chem. 279, 46614–46620.

    11. Kumar, K.G., Tang, W., Ravindranath, A.K., Clark, W.A., Croze, E., Fuchs, S.Y., 2003. SCF(HOS) ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-alpha receptor. EMBO J. 22, 5480–5490.

    12. Lauterbach-Rivière, L., Bergez, M., Mönch, S., Qu, B., Riess, M., Vondran, F.W.R., Liese, J., Hornung, V., Urban, S., König, R., 2020. Hepatitis B virus DNA is a substrate for the cGAS/STING pathway but is not sensed in infected hepatocytes. Viruses 12, 592.

    13. Liu, J., Carvalho, L.P., Bhattacharya, S., Carbone, C.J., Kumar, K.G., Leu, N.A., Yau, P.M., Donald, R.G., Weiss, M.J., Baker, D.P., Mclaughlin, K.J., Scott, P., Fuchs, S.Y., 2009.Mammalian casein kinase 1alpha and its leishmanial ortholog regulate stability of IFNAR1 and type I interferon signaling. Mol. Cell Biol. 29, 6401–6412.

    14. Lu, H.L.L.,F., 2013. Melanoma differentiation-associated gene 5 senses hepatitis B virus and activates innate immune signaling to suppress virus replication. J. Immunol. 191, 3264–3276.

    15. Nguyen, M.H., Wong, G., Gane, E., Kao, J.H., Dusheiko, G., 2020. Hepatitis B virus:advances in prevention, diagnosis, and therapy. Clin. Microbiol. Rev. 33, e00046, 00019.

    16. Pietro Lampertico, K.A., Berg, Thomas, Buti, Maria, Janssen, Harry L a, George, Papatheodoridis, Zoulim, Fabien, Frank, Tacke, 2017. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 67, 370–398.

    17. Poh, Z., Goh, B.B., Chang, P.E., Tan, C.K., 2015. Rates of cirrhosis and hepatocellular carcinoma in chronic hepatitis B and the role of surveillance: a 10-year follow-up of 673 patients. Eur. J. Gastroenterol. Hepatol. 27, 638–643.

    18. Roers, A., Hiller, B., Hornung, V., 2016. Recognition of endogenous nucleic acids by the innate immune system. Immunity 44, 739–754.

    19. Sato, S., Li, K., Kameyama, T., Hayashi, T., Ishida, Y., Murakami, S., Watanabe, T., Iijima, S., Sakurai, Y., Watashi, K., Tsutsumi, S., Sato, Y., Akita, H., Wakita, T., Rice, C.M., Harashima, H., Kohara, M., Tanaka, Y., Takaoka, A., 2015. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity 42, 123–132.

    20. Schreiber, G., 2017. The molecular basis for differential type I interferon signaling. J. Biol. Chem. 292, 7285–7294.

    21. Sommer, A.F., Rivière, L., Qu, B., Schott, K., Riess, M., Ni, Y., Shepard, C., Schnellbächer, E., Finkernagel, M., Himmelsbach, K., Welzel, K., Kettern, N., Donnerhak, C., Münk, C., Flory, E., Liese, J., Kim, B., Urban, S., König, R., 2016. Restrictive influence of SAMHD1 on Hepatitis B Virus life cycle. Sci. Rep. 6, 26616.

    22. Terrault, N.A., Lok, A.S.F., Mcmahon, B.J., Chang, K.M., Hwang, J.P., Jonas, M.M., Brown Jr., R.S., Bzowej, N.H., Wong, J.B., 2018. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 67, 1560–1599.

    23. Van Zonneveld, M., Honkoop, P., Hansen, B.E., Niesters, H.G., Darwish Murad, S., De Man, R.A., Schalm, S.W., Janssen, H.L., 2004. Long-term follow-up of alphainterferon treatment of patients with chronic hepatitis B. Hepatology 39, 804–810.

    24. Wang, Y.X., Niklasch, M., Liu, T., Wang, Y., Shi, B., Yuan, W., Baumert, T.F., Yuan, Z., Tong, S., Nassal, M., Wen, Y.M., 2020. Interferon-inducible MX2 is a host restriction factor of hepatitis B virus replication. J. Hepatol. 72, 865–876.

    25. Xia, C., Wolf, J.J., Vijayan, M., Studstill, C.J., Ma, W., Hahm, B., 2018. Casein kinase 1α mediates the degradation of receptors for type I and type II interferons caused by hemagglutinin of influenza A virus. J. Virol. 92, e00006–18.

    26. Xia, C.A., Hahm, B., P., 2018. Viral dedication to vigorous destruction of interferon receptors. Virology 522, 19–26.

    27. Zhao, H., Kurbanov, F., Wan, M.B., Yin, Y.K., Niu, J.Q., Hou, J.L., Wei, L., Wang, G.Q., Tanaka, Y., Mizokami, M., Si, C.W., 2007. Genotype B and younger patient age associated with better response to low-dose therapy: a trial with pegylated/ nonpegylated interferon-alpha-2b for hepatitis B e antigen-positive patients with chronic hepatitis B in China. Clin. Infect. Dis. 44, 541–548.

    28. Zheng, H., Qian, J., Varghese, B., Baker, D.P., Fuchs, S., 2011. Ligand-stimulated downregulation of the alpha interferon receptor: role of protein kinase D2. Mol. Cell Biol. 31, 710–720.

  • 加载中
  • 10.1016j.virs.2022.08.004-ESM.zip

Article Metrics

Article views(2328) PDF downloads(18) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    CK1α upregulates the IFNAR1 expression to prompt the anti-HBV effect of type I IFN in hepatoma carcinoma cells

      Corresponding author: Yuan Hu, huyuan@cqmu.edu.cn
    • Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China

    Abstract: Casein kinase 1α (CK1α) mediates the phosphorylation and degradation of interferon-α/β receptor 1 (IFNAR1) in response to viral infection. However, how CK1α regulates hepatitis B virus (HBV) replication and the anti-HBV effects of IFN-α are less reported. Here we show that CK1α can interact with IFNAR1 in hepatoma carcinoma cells and increased the abundance of IFNAR1 by reducing the ubiquitination levels in the presence of HBV. Furthermore, CK1α promotes the IFN-α triggered JAK-STAT signaling pathway and consequently enhances the antiviral effects of IFN-α against HBV replication. Our results collectively provide evidence that CK1α positively regulates the anti-HBV activity of IFN-α in hepatoma carcinoma cells, which would be a promising therapeutic target to improve the effectiveness of IFN-α therapy to cure CHB.

    Reference (28) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return