. doi: 10.1016/j.virs.2022.10.001
Citation: Wei Yang, Chen Zhang, Yan-Hua Wu, Li-Bo Liu, Zi-Da Zhen, Dong-Ying Fan, Zheng-Ran Song, Jia-Tong Chang, Pei-Gang Wang, Jing An. Mice 3D testicular organoid system as a novel tool to study Zika virus pathogenesis .VIROLOGICA SINICA, 2023, 38(1) : 66-74.  http://dx.doi.org/10.1016/j.virs.2022.10.001

应用小鼠睾丸三维类器官系统作为研究寨卡病毒致病机制的新工具

  • 寨卡病毒(Zika virus,ZIKV)因其对新生儿中枢神经系统及男性生殖系统的危害性对全球公共卫生构成了严重威胁。然而,人类睾丸样本的极度缺乏阻碍了对ZIKV致男性生殖系统损伤机制的深入研究。类器官是一种相对简单的体外模型,可以模拟相应组织器官的生理结构及病理改变。在本研究中,我们使用成年BALB/C小鼠的原代睾丸细胞构建了3D睾丸类器官模型,并发现这一类器官系统具有与睾丸相似的血睾屏障(Blood-testis barrier,BTB)样结构及睾酮合成能力。更重要的是,类器官中的睾丸细胞对ZIKV的易感性及ZIKV诱导的睾丸类器官病变也与哺乳动物睾丸相似。本研究为探索ZIKV所致的睾丸损害提供了一种简易的可重复的体外睾丸模型。

Mice 3D testicular organoid system as a novel tool to study Zika virus pathogenesis

  • Zika virus (ZIKV) poses a serious threat to global public health due to its close relationship with neurological and male reproductive damage. However, deficiency of human testicular samples hinders the in-depth research on ZIKV-induced male reproductive system injury. Organoids are relatively simple in vitro models, which could mimic the pathological changes of corresponding organs. In this study, we constructed a 3D testicular organoid model using primary testicular cells from adult BALB/c mice. Similar to the testis, this organoid system has a blood-testis barrier (BTB)-like structure and could synthesize testosterone. ZIKV tropism of testicular cells and ZIKV-induced pathological changes in testicular organoid was also similar to that in mammalian testis. Therefore, our results provide a simple and reproducible in vitro testicular model for the investigations of ZIKV-induced testicular injury.

  • 加载中
    1. Cao-Lormeau, V.M., Blake, A., Mons, S., Lastere, S., Roche, C., Vanhomwegen, J., Dub, T., Baudouin, L., Teissier, A., Larre, P., Vial, A.L., Decam, C., Choumet, V., Halstead, S.K., Willison, H.J., Musset, L., Manuguerra, J.C., Despres, P., Fournier, E., Mallet, H.P., Musso, D., Fontanet, A., Neil, J., and Ghawche, F., 2016. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia:a case-control study. Lancet 387, 1531-1539.

    2. Clevers, H., 2016. Modeling Development and Disease with Organoids. Cell 165, 1586-1597.

    3. Coffey, L.L., Pesavento, P.A., Keesler, R.I., Singapuri, A., Watanabe, J., Watanabe, R., Yee, J., Bliss-Moreau, E., Cruzen, C., Christe, K.L., Reader, J.R., von Morgenland, W., Gibbons, A.M., Allen, A.M., Linnen, J., Gao, K., Delwart, E., Simmons, G., Stone, M., Lanteri, M., Bakkour, S., Busch, M., Morrison, J., and Van Rompay, K.K., 2017. Zika Virus Tissue and Blood Compartmentalization in Acute Infection of Rhesus Macaques. Plos One 12, e0171148.

    4. Driehuis, E., Kretzschmar, K., and Clevers, H., 2020a. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc 15, 3380-3409.

    5. Driehuis, E., Kretzschmar, K., and Clevers, H., 2020b. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc 15, 3380-3409.

    6. Dudley, D.M., Aliota, M.T., Mohr, E.L., Weiler, A.M., Lehrer-Brey, G., Weisgrau, K.L., Mohns, M.S., Breitbach, M.E., Rasheed, M.N., Newman, C.M., Gellerup, D.D., Moncla, L.H., Post, J., Schultz-Darken, N., Schotzko, M.L., Hayes, J.M., Eudailey, J.A., Moody, M.A., Permar, S.R., O'Connor, S.L., Rakasz, E.G., Simmons, H.A., Capuano, S., Golos, T.G., Osorio, J.E., Friedrich, T.C., and O'Connor, D.H., 2016. A rhesus macaque model of Asian-lineage Zika virus infection. Nat Commun 7, 12204.

    7. Dym, M., 1994. Basement membrane regulation of Sertoli cells. Endocr Rev 15, 102-15.

    8. Ettayebi, K., Crawford, S.E., Murakami, K., Broughman, J.R., Karandikar, U., Tenge, V.R., Neill, F.H., Blutt, S.E., Zeng, X.L., Qu, L., Kou, B., Opekun, A.R., Burrin, D., Graham, D.Y., Ramani, S., Atmar, R.L., and Estes, M.K., 2016. Replication of human noroviruses in stem cell-derived human enteroids. Science 353, 1387-1393.

    9. Faizan, M.I., Abdullah, M., Ali, S., Naqvi, I.H., Ahmed, A., and Parveen, S., 2016. Zika Virus-Induced Microcephaly and Its Possible Molecular Mechanism. Intervirology 59, 152-158.

    10. Ferraris, P., Yssel, H., and Misse, D., 2019. Zika virus infection:an update. Microbes Infect 21, 353-360.

    11. Foy, B.D., Kobylinski, K.C., Chilson, F.J., Blitvich, B.J., Travassos, D.R.A., Haddow, A.D., Lanciotti, R.S., and Tesh, R.B., 2011. Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis 17, 880-2.

    12. Gagliano-Juca, T., and Basaria, S., 2019. Testosterone replacement therapy and cardiovascular risk. Nat Rev Cardiol 16, 555-574.

    13. Garcez, P.P., Loiola, E.C., Madeiro, D.C.R., Higa, L.M., Trindade, P., Delvecchio, R., Nascimento, J.M., Brindeiro, R., Tanuri, A., and Rehen, S.K., 2016. Zika virus impairs growth in human neurospheres and brain organoids. Science 352, 816-8.

    14. Gassei, K., Schlatt, S., and Ehmcke, J., 2006. De novo morphogenesis of seminiferous tubules from dissociated immature rat testicular cells in xenografts. J Androl 27, 611-8.

    15. Gorman, M.J., Caine, E.A., Zaitsev, K., Begley, M.C., Weger-Lucarelli, J., Uccellini, M.B., Tripathi, S., Morrison, J., Yount, B.L., Dinnon, K.R., Ruckert, C., Young, M.C., Zhu, Z., Robertson, S.J., McNally, K.L., Ye, J., Cao, B., Mysorekar, I.U., Ebel, G.D., Baric, R.S., Best, S.M., Artyomov, M.N., Garcia-Sastre, A., and Diamond, M.S., 2018. An Immunocompetent Mouse Model of Zika Virus Infection. Cell Host Microbe 23, 672-685.e6.

    16. Govero, J., Esakky, P., Scheaffer, S.M., Fernandez, E., Drury, A., Platt, D.J., Gorman, M.J., Richner, J.M., Caine, E.A., Salazar, V., Moley, K.H., and Diamond, M.S., 2016. Zika virus infection damages the testes in mice. Nature 540, 438-442.

    17. Gyawali, N., Bradbury, R.S., and Taylor-Robinson, A.W., 2016. The global spread of Zika virus:is public and media concern justified in regions currently unaffected? Infect Dis Poverty 5, 37.

    18. Haddow, A.D., Nalca, A., Rossi, F.D., Miller, L.J., Wiley, M.R., Perez-Sautu, U., Washington, S.C., Norris, S.L., Wollen-Roberts, S.E., Shamblin, J.D., Kimmel, A.E., Bloomfield, H.A., Valdez, S.M., Sprague, T.R., Principe, L.M., Bellanca, S.A., Cinkovich, S.S., Lugo-Roman, L., Cazares, L.H., Pratt, W.D., Palacios, G.F., Bavari, S., Pitt, M.L., and Nasar, F., 2017. High Infection Rates for Adult Macaques after Intravaginal or Intrarectal Inoculation with Zika Virus. Emerg Infect Dis 23, 1274-1281.

    19. Hadley, M.A., Byers, S.W., Suarez-Quian, C.A., Kleinman, H.K., and Dym, M., 1985. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J Cell Biol 101, 1511-22.

    20. Halabi, J., Jagger, B.W., Salazar, V., Winkler, E.S., White, J.P., Humphrey, P.A., Hirsch, A.J., Streblow, D.N., Diamond, M.S., and Moley, K., 2020. Zika Virus Causes Acute and Chronic Prostatitis in Mice and Macaques. J Infect Dis 221, 1506-1517.

    21. Hirsch, A.J., Smith, J.L., Haese, N.N., Broeckel, R.M., Parkins, C.J., Kreklywich, C., DeFilippis, V.R., Denton, M., Smith, P.P., Messer, W.B., Colgin, L.M., Ducore, R.M., Grigsby, P.L., Hennebold, J.D., Swanson, T., Legasse, A.W., Axthelm, M.K., MacAllister, R., Wiley, C.A., Nelson, J.A., and Streblow, D.N., 2017. Zika Virus infection of rhesus macaques leads to viral persistence in multiple tissues. Plos Pathog 13, e1006219.

    22. Joguet, G., Mansuy, J.M., Matusali, G., Hamdi, S., Walschaerts, M., Pavili, L., Guyomard, S., Prisant, N., Lamarre, P., Dejucq-Rainsford, N., Pasquier, C., and Bujan, L., 2017. Effect of acute Zika virus infection on sperm and virus clearance in body fluids:a prospective observational study. Lancet Infect Dis 17, 1200-1208.

    23. Kumar, A., Jovel, J., Lopez-Orozco, J., Limonta, D., Airo, A.M., Hou, S., Stryapunina, I., Fibke, C., Moore, R.B., and Hobman, T.C., 2018. Human Sertoli cells support high levels of Zika virus replication and persistence. Sci Rep 8, 5477.

    24. Kurscheidt, F.A., Mesquita, C., Damke, G., Damke, E., Carvalho, A., Suehiro, T.T., Teixeira, J., Da, S.V., Souza, R.P., and Consolaro, M., 2019. Persistence and clinical relevance of Zika virus in the male genital tract. Nat Rev Urol 16, 211-230.

    25. Lancaster, M.A., and Knoblich, J.A., 2014. Organogenesis in a dish:modeling development and disease using organoid technologies. Science 345, 1247125.

    26. Legendre, A., Froment, P., Desmots, S., Lecomte, A., Habert, R., and Lemazurier, E., 2010. An engineered 3D blood-testis barrier model for the assessment of reproductive toxicity potential. Biomaterials 31, 4492-505.

    27. Lessler, J., Chaisson, L.H., Kucirka, L.M., Bi, Q., Grantz, K., Salje, H., Carcelen, A.C., Ott, C.T., Sheffield, J.S., Ferguson, N.M., Cummings, D.A., Metcalf, C.J., and Rodriguez-Barraquer, I., 2016. Assessing the global threat from Zika virus. Science 353, aaf8160.

    28. Li, C., Xu, D., Ye, Q., Hong, S., Jiang, Y., Liu, X., Zhang, N., Shi, L., Qin, C.F., and Xu, Z., 2016. Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice. Cell Stem Cell 19, 120-6.

    29. Li, X., Ma, W., Wong, G., Ma, S., Li, S., Bi, Y., and Gao, G.F., 2018. A new threat to human reproduction system posed by Zika virus (ZIKV):From clinical investigations to experimental studies. Virus Res 254, 10-14.

    30. Liu, W., Han, R., Wu, H., and Han, D., 2018. Viral threat to male fertility. Andrologia 50, e13140.

    31. Ma, W., Li, S., Ma, S., Jia, L., Zhang, F., Zhang, Y., Zhang, J., Wong, G., Zhang, S., Lu, X., Liu, M., Yan, J., Li, W., Qin, C., Han, D., Qin, C., Wang, N., Li, X., and Gao, G.F., 2016. Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice. Cell 167, 1511-1524.e10.

    32. Ma, W., Li, S., Ma, S., Jia, L., Zhang, F., Zhang, Y., Zhang, J., Wong, G., Zhang, S., Lu, X., Liu, M., Yan, J., Li, W., Qin, C., Han, D., Qin, C., Wang, N., Li, X., and Gao, G.F., 2017. Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice. Cell 168, 542.

    33. Mackay, S., Booth, S.H., MacGowan, A., and Smith, R.A., 1999. Ultrastructural studies demonstrate that epithelial polarity is established in cultured mouse pre-Sertoli cells by extracellular matrix components. J Electron Microsc (Tokyo) 48, 159-65.

    34. Matusali, G., Houzet, L., Satie, A.P., Mahe, D., Aubry, F., Couderc, T., Frouard, J., Bourgeau, S., Bensalah, K., Lavoue, S., Joguet, G., Bujan, L., Cabie, A., Avelar, G., Lecuit, M., Le Tortorec, A., and Dejucq-Rainsford, N., 2018. Zika virus infects human testicular tissue and germ cells. J Clin Invest 128, 4697-4710.

    35. Mincheva, M., Sandhowe-Klaverkamp, R., Wistuba, J., Redmann, K., Stukenborg, J.B., Kliesch, S., and Schlatt, S., 2018. Reassembly of adult human testicular cells:can testis cord-like structures be created in vitro? Mol Hum Reprod 24, 55-63.

    36. Mlera, L., and Bloom, M.E., 2019. Differential Zika Virus Infection of Testicular Cell Lines. Viruses 11.

    37. Osuna, C.E., Lim, S.Y., Deleage, C., Griffin, B.D., Stein, D., Schroeder, L.T., Omange, R.W., Best, K., Luo, M., Hraber, P.T., Andersen-Elyard, H., Ojeda, E.F., Huang, S., Vanlandingham, D.L., Higgs, S., Perelson, A.S., Estes, J.D., Safronetz, D., Lewis, M.G., and Whitney, J.B., 2016. Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nat Med 22, 1448-1455.

    38. Pardi, N., Hogan, M.J., Pelc, R.S., Muramatsu, H., Andersen, H., DeMaso, C.R., Dowd, K.A., Sutherland, L.L., Scearce, R.M., Parks, R., Wagner, W., Granados, A., Greenhouse, J., Walker, M., Willis, E., Yu, J.S., McGee, C.E., Sempowski, G.D., Mui, B.L., Tam, Y.K., Huang, Y.J., Vanlandingham, D., Holmes, V.M., Balachandran, H., Sahu, S., Lifton, M., Higgs, S., Hensley, S.E., Madden, T.D., Hope, M.J., Kariko, K., Santra, S., Graham, B.S., Lewis, M.G., Pierson, T.C., Haynes, B.F., and Weissman, D., 2017. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543, 248-251.

    39. Pielnaa, P., Al-Saadawe, M., Saro, A., Dama, M.F., Zhou, M., Huang, Y., Huang, J., and Xia, Z., 2020. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology 543, 34-42.

    40. Pletnev, A.G., Maximova, O.A., Liu, G., Kenney, H., Nagata, B.M., Zagorodnyaya, T., Moore, I., Chumakov, K., and Tsetsarkin, K.A., 2021. Epididymal epithelium propels early sexual transmission of Zika virus in the absence of interferon signaling. Nat Commun 12, 2469.

    41. Qian, X., Nguyen, H.N., Song, M.M., Hadiono, C., Ogden, S.C., Hammack, C., Yao, B., Hamersky, G.R., Jacob, F., Zhong, C., Yoon, K.J., Jeang, W., Lin, L., Li, Y., Thakor, J., Berg, D.A., Zhang, C., Kang, E., Chickering, M., Nauen, D., Ho, C.Y., Wen, Z., Christian, K.M., Shi, P.Y., Maher, B.J., Wu, H., Jin, P., Tang, H., Song, H., and Ming, G.L., 2016. Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell 165, 1238-1254.

    42. Richer, G., Baert, Y., and Goossens, E., 2020. In-vitro spermatogenesis through testis modelling:Toward the generation of testicular organoids. Andrology-Us 8, 879-891.

    43. Richner, J.M., Himansu, S., Dowd, K.A., Butler, S.L., Salazar, V., Fox, J.M., Julander, J.G., Tang, W.W., Shresta, S., Pierson, T.C., Ciaramella, G., and Diamond, M.S., 2017. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell 168, 1114-1125.e10.

    44. Robinson, C.L., Chong, A., Ashbrook, A.W., Jeng, G., Jin, J., Chen, H., Tang, E.I., Martin, L.A., Kim, R.S., Kenyon, R.M., Do, E., Luna, J.M., Saeed, M., Zeltser, L., Ralph, H., Dudley, V.L., Goldstein, M., Rice, C.M., Cheng, C.Y., Seandel, M., and Chen, S., 2018. Male germ cells support long-term propagation of Zika virus. Nat Commun 9, 2090.

    45. Sakib, S., Uchida, A., Valenzuela-Leon, P., Yu, Y., Valli-Pulaski, H., Orwig, K., Ungrin, M., and Dobrinski, I., 2019. Formation of organotypic testicular organoids in microwell culturedagger. Biol Reprod 100, 1648-1660.

    46. Schlatt, S., de Kretser, D.M., and Loveland, K.L., 1996. Discriminative analysis of rat Sertoli and peritubular cells and their proliferation in vitro:evidence for follicle-stimulating hormone-mediated contact inhibition of Sertoli cell mitosis. Biol Reprod 55, 227-35.

    47. Shan, C., Xie, X., and Shi, P.Y., 2018. Zika Virus Vaccine:Progress and Challenges. Cell Host Microbe 24, 12-17.

    48. Sheng, Z.Y., Gao, N., Wang, Z.Y., Cui, X.Y., Zhou, D.S., Fan, D.Y., Chen, H., Wang, P.G., and An, J., 2017. Sertoli Cells Are Susceptible to ZIKV Infection in Mouse Testis. Front Cell Infect Microbiol 7, 272.

    49. Siemann, D.N., Strange, D.P., Maharaj, P.N., Shi, P.Y., and Verma, S., 2017. Zika Virus Infects Human Sertoli Cells and Modulates the Integrity of the In Vitro Blood-Testis Barrier Model. J Virol 91.

    50. Siu, M.K., and Cheng, C.Y., 2004. Dynamic cross-talk between cells and the extracellular matrix in the testis. Bioessays 26, 978-92.

    51. Siu, M.K., and Cheng, C.Y., 2008. Extracellular matrix and its role in spermatogenesis. Adv Exp Med Biol 636, 74-91.

    52. Strange, D.P., Jiyarom, B., Pourhabibi, Z.N., Xie, X., Baker, C., Sadri-Ardekani, H., Shi, P.Y., and Verma, S., 2019. Axl Promotes Zika Virus Entry and Modulates the Antiviral State of Human Sertoli Cells. Mbio 10.

    53. Torres, J.R., Martinez, N., and Moros, Z., 2016. Microhematospermia in acute Zika virus infection. Int J Infect Dis 51, 127.

    54. Tung, P.S., and Fritz, I.B., 1984. Extracellular matrix promotes rat Sertoli cell histotypic expression in vitro. Biol Reprod 30, 213-29.

    55. van der Wee, K., and Hofmann, M.C., 1999. An in vitro tubule assay identifies HGF as a morphogen for the formation of seminiferous tubules in the postnatal mouse testis. Exp Cell Res 252, 175-85.

    56. von Kopylow, K., Schulze, W., Salzbrunn, A., Schaks, M., Schafer, E., Roth, B., Schlatt, S., and Spiess, A.N., 2018. Dynamics, ultrastructure and gene expression of human in vitro organized testis cells from testicular sperm extraction biopsies. Mol Hum Reprod 24, 123-134.

    57. Willerton, L., Smith, R.A., Russell, D., and Mackay, S., 2004. Effects of FGF9 on embryonic Sertoli cell proliferation and testicular cord formation in the mouse. Int J Dev Biol 48, 637-43.

    58. Xu, D., Li, C., Qin, C.F., and Xu, Z., 2019. Update on the Animal Models and Underlying Mechanisms for ZIKV-Induced Microcephaly. Annu Rev Virol 6, 459-479.

    59. Yang, W., Wu, Y.H., Liu, S.Q., Sheng, Z.Y., Zhen, Z.D., Gao, R.Q., Cui, X.Y., Fan, D.Y., Qin, Z.H., Zheng, A.H., Wang, P.G., and An, J., 2020. S100A4+ macrophages facilitate zika virus invasion and persistence in the seminiferous tubules via interferon-gamma mediation. Plos Pathog 16, e1009019.

    60. Yu, J., Liu, X., Ke, C., Wu, Q., Lu, W., Qin, Z., He, X., Liu, Y., Deng, J., Xu, S., Li, Y., Zhu, L., Wan, C., Zhang, Q., Xiao, W., Xie, Q., Zhang, B., and Zhao, W., 2017. Effective Suckling C57BL/6, Kunming, and BALB/c Mouse Models with Remarkable Neurological Manifestation for Zika Virus Infection. Viruses 9.

    61. Zhang, X., Wang, L., Zhang, X., Ren, L., Shi, W., Tian, Y., Zhu, J., and Zhang, T., 2017. The use of KnockOut serum replacement (KSR) in three dimensional rat testicular cells co-culture model:An improved male reproductive toxicity testing system. Food Chem Toxicol 106, 487-495.

    62. Zhou, J., Li, C., Sachs, N., Chiu, M.C., Wong, B.H., Chu, H., Poon, V.K., Wang, D., Zhao, X., Wen, L., Song, W., Yuan, S., Wong, K.K., Chan, J.F., To, K.K., Chen, H., Clevers, H., and Yuen, K.Y., 2018. Differentiated human airway organoids to assess infectivity of emerging influenza virus. Proc Natl Acad Sci U S A 115, 6822-6827.

  • 加载中

Article Metrics

Article views(2166) PDF downloads(18) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Mice 3D testicular organoid system as a novel tool to study Zika virus pathogenesis

      Corresponding author: Pei-Gang Wang, pgwang@ccmu.edu.cn
      Corresponding author: Jing An, anjing@ccmu.edu.cn,15810200117@163.com
    • a. Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China;
    • b. Department of Neurosurgery, Capital Medical University Sanbo Brain Hospital, Beijing, 100093, China;
    • c. Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China

    Abstract: Zika virus (ZIKV) poses a serious threat to global public health due to its close relationship with neurological and male reproductive damage. However, deficiency of human testicular samples hinders the in-depth research on ZIKV-induced male reproductive system injury. Organoids are relatively simple in vitro models, which could mimic the pathological changes of corresponding organs. In this study, we constructed a 3D testicular organoid model using primary testicular cells from adult BALB/c mice. Similar to the testis, this organoid system has a blood-testis barrier (BTB)-like structure and could synthesize testosterone. ZIKV tropism of testicular cells and ZIKV-induced pathological changes in testicular organoid was also similar to that in mammalian testis. Therefore, our results provide a simple and reproducible in vitro testicular model for the investigations of ZIKV-induced testicular injury.

    Reference (62) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return