. doi: 10.1016/j.virs.2022.11.003
Citation: Xiaorui Xing, Lei Wang, Zhen Cui, Wangjun Fu, Tao Zheng, Lili Qin, Pingju Ge, Aidong Qian, Nan Wang, Shuai Yuan. Structures of SARS-CoV-2 spike protein alert noteworthy sites for the potential approaching variants .VIROLOGICA SINICA, 2022, 37(6) : 938-941.  http://dx.doi.org/10.1016/j.virs.2022.11.003

基于SARS-CoV-2刺突蛋白的结构预警需要注意的潜在突变位点

  • SARS-CoV-2的流行已经造成了全球数百万人死亡,但同时针对COVID-19病毒突变株(主要是一些关键蛋白,如刺突蛋白上的氨基酸位点突变)流行的疫苗研发速度也是前所未有的。目前已完成的研究主要集中在RBD和NTD上热门突变位点的免疫逃避分子机制,然而对其他位置突变的关注较少。本文我们利用低温冷冻电镜技术解析了Lambda、Mu、C.1.2和B.1.620突变株刺突蛋白的三维结构。我们通过结构分析发现了两个重要的突变位点,分别是残基156-157的缺失和T859N的突变。该缺失造成邻近的β-链变短从而扭曲了片层结构,并导致整个NTD结构域的移动。同时我们还发现T859N位点的突变造成调节刺突蛋白构象变化的动力学障碍。我们的研究结果揭示了两个新的突变位点,提醒我们应更多地关注RBD和NTD以外的突变,特别是位于FPPR和630 loop基序的突变。

Structures of SARS-CoV-2 spike protein alert noteworthy sites for the potential approaching variants

  • Highlights
    1 Deletion of residues 156–157 warps the neighboring beta-sheet and leads NTD and RBD to shift.
    2 T859N stabilizes the packing of the 630 loop motif to make RBD standing transition more difficult.
    3 The overall structures of the closed state S complex from different variants resemble each other.
    4 Mutations in FPPR may affect the overall structure of the trimeric spike protein.

  • 加载中
    1. Cai, Y., Zhang, J., Xiao, T., Peng, H., Sterling, S.M., Walsh Jr., R.M., Rawson, S., RitsVolloch, S., Chen, B., 2020. Distinct conformational states of SARS-CoV-2 spike protein. Science 369, 1586–1592.

    2. Cui, Z., Liu, P., Wang, N., Wang, L., Fan, K., Zhu, Q., Wang, K., Chen, R., Feng, R., Jia, Z., Yang, M., Xu, G., Zhu, B., Fu, W., Chu, T., Feng, L., Wang, Y., Pei, X., Yang, P., Xie, X.S., Cao, L., Cao, Y., Wang, X., 2022. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell 185, 860–871.e13.

    3. Harvey, W.T., Carabelli, A.M., Jackson, B., Gupta, R.K., Thomson, E.C., Harrison, E.M., Ludden, C., Reeve, R., Rambaut, A., Consortium, C.-G.U., Peacock, S.J., Robertson, D.L., 2021. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424.

    4. Hoffmann, M., Kleine-Weber, H., Pöhlmann, S., 2020. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78, 779–784.e775.

    5. Kimura, I., Kosugi, Y., Wu, J., Zahradnik, J., Yamasoba, D., Butlertanaka, E.P., Tanaka, Y.L., Uriu, K., Liu, Y., Morizako, N., Shirakawa, K., Kazuma, Y., Nomura, R., Horisawa, Y., Tokunaga, K., Ueno, T., Takaori-Kondo, A., Schreiber, G., Arase, H., Genotype to Phenotype Japan, C., Motozono, C., Saito, A., Nakagawa, S., Sato, K., 2022. The SARS-CoV-2 Lambda variant exhibits enhanced infectivity and immune resistance. Cell Rep. 38, 110218.

    6. Korber, B., Fischer, W.M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E.E., Bhattacharya, T., Foley, B., Hastie, K.M., Parker, M.D., Partridge, D.G., Evans, C.M., Freeman, T.M., de Silva, T.I., McDanal, C., Perez, L.G., Tang, H., Moon-Walker, A., Whelan, S.P., LaBranche, C.C., Saphire, E.O., Montefiori, D.C., 2020. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e819.

    7. Walls, A.C., Tortorici, M.A., Snijder, J., Xiong, X., Bosch, B.J., Rey, F.A., Veesler, D., 2017. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc. Natl. Acad. Sci. U. S. A. 114, 11157–11162.

    8. Zhang, J., Xiao, T., Cai, Y., Chen, B., 2021. Structure of SARS-CoV-2 spike protein. Curr. Opin. Virol. 50, 173–182.

    9. Zhang, L., Jackson, C.B., Mou, H., Ojha, A., Peng, H., Quinlan, B.D., Rangarajan, E.S., Pan, A., Vanderheiden, A., Suthar, M.S., Li, W., Izard, T., Rader, C., Farzan, M., Choe, H., 2020. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat. Commun. 11, 6013.

    10. Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao, G.F., Shi, Z.L., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273.

    11. Zhou, T., Tsybovsky, Y., Gorman, J., Rapp, M., Cerutti, G., Chuang, G.Y., Katsamba, P.S., Sampson, J.M., Schön, A., Bimela, J., Boyington, J.C., Nazzari, A., Olia, A.S., Shi, W., Sastry, M., Stephens, T., Stuckey, J., Teng, I.T., Wang, P., Wang, S., Zhang, B., Friesner, R.A., Ho, D.D., Mascola, J.R., Shapiro, L., Kwong, P.D., 2020. Cryo-EM structures of SARS-CoV-2 spike without and with ACE2 reveal a pH-dependent switch to mediate endosomal positioning of receptor-binding domains. Cell Host Microbe 28, 867–879.e865.

  • 加载中
  • 10.1016j.virs.2022.11.003-ESM.docx

Article Metrics

Article views(2376) PDF downloads(21) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Structures of SARS-CoV-2 spike protein alert noteworthy sites for the potential approaching variants

      Corresponding author: Aidong Qian, qianaidong0115@163.com
      Corresponding author: Nan Wang, wangnan161@ibp.ac.cn
      Corresponding author: Shuai Yuan, yuanshuai@wh.iov.cn
    • a College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China;
    • b College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Lab of Animal Production, Product Quality and Security, Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China;
    • c CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China;
    • d University of Chinese Academy of Sciences, Beijing, 100101, China;
    • e Acrobiosystems, Beijing, 100101, China;
    • f State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China

    Abstract: Highlights
    1 Deletion of residues 156–157 warps the neighboring beta-sheet and leads NTD and RBD to shift.
    2 T859N stabilizes the packing of the 630 loop motif to make RBD standing transition more difficult.
    3 The overall structures of the closed state S complex from different variants resemble each other.
    4 Mutations in FPPR may affect the overall structure of the trimeric spike protein.

    Reference (11) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return