. doi: 10.1016/j.virs.2022.11.009
Citation: Huaguo Huang, Wen Dang, Zhengwang Shi, Mingyang Ding, Fan Xu, Tao Li, Tao Feng, Haixue Zheng, Shuqi Xiao. Identification of African swine fever virus MGF505-2R as a potent inhibitor of innate immunity in vitro .VIROLOGICA SINICA, 2023, 38(1) : 84-95.  http://dx.doi.org/10.1016/j.virs.2022.11.009

非洲猪瘟病毒MGF505-2R蛋白在细胞水平上具有天然免疫抑制功能

  • 非洲猪瘟(ASF)是由非洲猪瘟病毒(ASFV)引起的一种急性、出血性和高度接触性的传染病。由于ASFV基因组庞大且长度不一致,目前除了越南外在其他国家还没有有效的疫苗或药物阻止ASF的传播。ASFV的基因组由一个中间的保守区和两端的可变区组成,编码至少五个多基因家族(MGF),而MGF的生物学功能还没有完全阐述清楚。为了探索MGF505-2R的机制和调控,本文以目前流行的高致病性的基因II型ASFV CN/GS/2018为模板构建缺失MGF505-2R的ASFV突变毒株ASFV-Δ2R。转录组分析表明,ASFV-Δ2R感染BMDM后与ASFV CN/GS/2018相比可以诱导更多差异表达的DEG。GO富集分析表明ASFV-Δ2R感染细胞后诱导上调的基因大部分与干扰素和炎症以及先天性免疫基因有关,RT-qPCR实验进一步验证了上述结论。KEGG通路分析确定了DEG主要参与的路径与病原体的识别和先天性抗病毒的免疫反应有关。另外在药理学上证明了外源性细胞因子如I/II型IFN,TNF-α和IL-1β等可以协同调控抗病毒的免疫反应,同时抑制ASFV的扩增。总之,MGF505-2R是一个新发现的参与先天性免疫反应的基因,参与宿主的免疫调控和病毒的复制。

Identification of African swine fever virus MGF505-2R as a potent inhibitor of innate immunity in vitro

  • African swine fever (ASF) is etiologically an acute, highly contagious and hemorrhagic disease caused by African swine fever virus (ASFV). Due to its genetic variation and phenotypic diversity, until now, no efficient commercial vaccines or therapeutic options are available. The ASFV genome contains a conserved middle region and two flexible ends that code for five multigene families (MGFs), while the biological functions of the MGFs are not fully characterized. Here, ASFV MGF505-2R-deficient mutant ASFV-Δ2R was constructed based on a highly virulent genotype II field isolate ASFV CN/GS/2018 currently circulating in China. Transcriptomic profiling demonstrated that ASFV-Δ2R was capable of inducing a larger number of differentially expressed genes (DEGs) compared with ASFV CN/GS/2018. Hierarchical clustering of up-regulated DEGs revealed that ASFV-Δ2R induced the most dramatic expression of interferon-related genes and inflammatory and innate immune genes, as further validated by RT-qPCR. The GO and KEGG pathway analysis identified significantly enriched pathways involved in pathogen recognition and innate antiviral immunity. Conversely, pharmacological activation of those antiviral immune responses by exogenous cytokines, including type I/II IFNs, TNF-α and IL-1β, exerted combinatory effects and synergized in antiviral capacity against ASFV replication. Collectively, MGF505-2R is a newly identified inhibitor of innate immunity potentially implicated in immune evasion.

  • 加载中
    1. Afonso, C.L., Piccone, M.E., Zaffuto, K.M., Neilan, J., Kutish, G.F., Lu, Z., Balinsky, C.A., Gibb, T.R., Bean, T.J., Zsak, L.,Rock, D.L., 2004. African swine fever virus multigene family 360 and 530 genes affect host interferon response. J. Virol. 78, 1858-1864.

    2. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S.,Prjibelski, A.D., 2012. SPAdes:a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455-477.

    3. Borca, M.V., 2021. Evaluation of an ASFV RNA Helicase Gene A859L for Virus Replication and Swine Virulence. Viruses, 14.

    4. Burrage, T.G., Lu, Z., Neilan, J.G., Rock, D.L.,Zsak, L., 2004. African Swine Fever Virus Multigene Family 360 Genes Affect Virus Replication and Generalization of Infection in Ornithodoros porcinus Ticks. J. Virol. 78, 2445.

    5. Carrasco, C.P., Rigden, R.C., Schaffner, R., Gerber, H., Neuhaus, V., Inumaru, S., Takamatsu, H., Bertoni, G., Mccullough, K.C.,Summerfield, A., 2001. Porcine dendritic cells generated in vitro:morphological, phenotypic and functional properties. Immunology, 104, 175-184.

    6. Chen, W., Zhao, D., He, X., Liu, R., Wang, Z., Zhang, X., Li, F., Shan, D., Chen, H., Zhang, J., Wang, L., Wen, Z., Wang, X., Guan, Y., Liu, J.,Bu, Z., 2020. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci China Life Sci, 63, 623-634.

    7. Esparza I, González Jc,E., V., 1988 Effect of interferon-alpha, interferon-gamma and tumour necrosis factor on African swine fever virus replication in porcine monocytes and macrophages. J. Gen. Virol. 69 7.

    8. Fan, W., Jiao, P., Zhang, H., Chen, T., Zhou, X., Qi, Y., Sun, L., Shang, Y., Zhu, H., Hu, R., Liu, W.,Li, J., 2020. Inhibition of African Swine Fever Virus Replication by Porcine Type I and Type II Interferons. Front. Microb. 11.

    9. Gladue, Douglas, P., Krug, Peter, W., Carlson, Jolene, O'donnell,Vivian, 2016. African swine fever virus Georgia isolate harboring deletions of 9GL and MGF360/505 genes is highly attenuated in swine but does not confer protection against parental virus challenge. Virus Res. 221, 8-14.

    10. Golding, J.P., Goatley, L., Goodbourn, S., Dixon, L.K., Taylor, G., Netherton, C.L., 2016. Sensitivity of African swine fever virus to type I interferon is linked to genes within multigene families 360 and 505. Virology, 493, 154-161.

    11. Iscaro, C., Dondo, A., Ruocco, L., Masoero, L., Giammarioli, M., Zoppi, S., Guberti, V.,Feliziani, F., 2022. January 2022:Index case of new African Swine Fever incursion in mainland Italy. Trans. Emerg. Dis. 69.

    12. Kim, S.E., Hwang, J.H., Kim, Y.K.,Lee, H.T., 2019. Heterogeneity of porcine bone marrow-derived dendritic cells induced by GM-CSF. PloS ONE, 14, e0223590.

    13. Li, D., Liu, Y., Qi, X., Wen, Y., Li, P., Ma, Z., Liu, Y., Zheng, H.,Liu, Z., 2021a. African Swine Fever Virus MGF-110-9L-deficient Mutant Has Attenuated Virulence in Pigs. Virol. Sin. 36, 187-195.

    14. Li, D., Yang, W., Li, L., Li, P., Ma, Z., Zhang, J., Qi, X., Ren, J., Ru, Y., Niu, Q., Liu, Z., Liu, X.,Zheng, H., 2021b. African Swine Fever Virus MGF-505-7R Negatively Regulates cGAS-STING-Mediated Signaling Pathway. J. Immunol. 206, 1844-1857.

    15. Li, D., Yang, W., Li, L., Li, P.,Zheng, H., 2021c. African Swine Fever Virus MGF-505-7R Negatively Regulates cGAS-STING-Mediated Signaling Pathway. J. Immunol. 206, ji2001110.

    16. Li, D., Zhang, J., Yang, W., Li, P., Ru, Y., Kang, W., Li, L., Ran, Y.,Zheng, H., 2021d. African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1- and JAK2-mediated signaling. J. Biol. Chem. 297, 101190.

    17. Li, J., Song, J., Kang, L., Huang, L., Zhou, S., Hu, L., Zheng, J., Li, C., Zhang, X., He, X., Zhao, D., Bu, Z.,Weng, C., 2021a. pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1beta and type I IFN production. PLoS Pathog. 17, e1009733.

    18. Li, J., Song, J., Kang, L., Huang, L., Zhou, S., Hu, L., Zheng, J., Li, C., Zhang, X., He, X., Zhao, D., Bu, Z.,Weng, C., 2021b. pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production. PLoS Pathog. 17, e1009733.

    19. Liu, H., Zhu, Z., Feng, T., Ma, Z., Xue, Q., Wu, P., Li, P., Li, S., Yang, F., Cao, W., Xue, Z., Chen, H., Liu, X.,Zheng, H., 2021. African Swine Fever Virus E120R Protein Inhibits Interferon Beta Production by Interacting with IRF3 To Block Its Activation. J. Virol. 95, e0082421.

    20. Malogolovkin, A.,Kolbasov, D., 2019. Genetic and antigenic diversity of African swine fever virus. Virus Res. 271, 197673.

    21. O'donnell, V., Holinka, L.G., Gladue, D.P., Sanford, B., Krug, P.W., Lu, X., Arzt, J., Reese, B., Carrillo, C., Risatti, G.R., Borca, M.V., 2015. African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus. J. Virol. 89, 6048-6056.

    22. O’donnell, V., Holinka, L.G., Sanford, B., Krug, P.W., Carlson, J., Pacheco, J.M., Reese, B., Risatti, G.R., Gladue, D.P., Borca, M.V., 2016. African swine fever virus Georgia isolate harboring deletions of 9GL and MGF360/505 genes is highly attenuated in swine but does not confer protection against parental virus challenge. Virus Res. 221, 8-14.

    23. Ramirez-Medina, E., Vuono, E.A., Rai, A., Pruitt, S., Silva, E., Velazquez-Salinas, L., Zhu, J., Gladue, D.P., Borca, M.V., 2020. Evaluation in Swine of a Recombinant African Swine Fever Virus Lacking the MGF-360-1L Gene. Viruses, 12.

    24. Ramirezmedina, E., Vuono, E., Pruitt, S., Rai, A., Silva, E., Espinoza, N., Zhu, J., Velazquezsalinas, L., Borca, M.V., Gladue, D.P., 2021. Development and In Vivo Evaluation of a MGF110-1L Deletion Mutant in African Swine Fever Strain Georgia. Viruses, 13, 286.

    25. Raquel, García-Belmonte, Daniel, Pérez-Núñez, Marco, Pittau, Juergen, Richt, Yolanda, 2019. African swine fever virus Armenia/07 virulent strain controls IFN-β production through cGAS-STING pathway. J. Virol. 93, e02298-18.

    26. Ravilov, R.K., Rizvanov, A.A., Mingaleev, D.N., Galeeva, A.G., Zakirova, E., Shuralev, E.A., Rutland, C., Khammadov, N.I.,Efimova, M.A., 2022. Viral Vector Vaccines Against ASF:Problems and Prospectives. Front. Vet. Sci. 9, 830244.

    27. Razzuoli, E., Franzoni, G., Carta, T., Zinellu, S., Amadori, M., Modesto, P.,Oggiano, A., 2020. Modulation of Type I Interferon System by African Swine Fever Virus. Pathogens, 9, 361.

    28. Reis, A.L., Abrams, C.C., Goatley, L.C., Netherton, C., Chapman, D.G., Sanchez-Cordon, P.,Dixon, L.K., 2016. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine, 34, 4698-4705.

    29. Schmittgen, T.D.,Livak, K.J., 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101-1108.

    30. Sun, M., Yu, S., Ge, H., Wang, T., Li, Y., Zhou, P., Pan, L., Han, Y., Yang, Y., Sun, Y., Li, S., Li, L.F., Qiu, H.J., 2022. The A137R Protein of African Swine Fever Virus Inhibits Type I Interferon Production via the Autophagy-Mediated Lysosomal Degradation of TBK1. J. Virol. 96, e0195721.

    31. Vivian, O'donnell, Lauren, G., Holinka, Douglas, P., Gladue, Brenton, Sanford, Peter, W., Krug, 2015. African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus. J. Virol. 89, 6048-56.

    32. Wang, L., Luo, Y., Zhao, Y., Gao, G.F., Bi, Y., Qiu, H.J., 2020. Comparative genomic analysis reveals an ‘open’ pan-genome of African swine fever virus. Transbound. Emerg. Dis. 67, 1553-1562.

    33. Wang, X., Wu, J., Wu, Y., Chen, H., Zhang, S., Li, J., Xin, T., Jia, H., Hou, S., Jiang, Y., 2018. Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1. Biochem. Biophys. Res. Commun. 506, 437-443.

    34. Wang, Y., Kang, W., Yang, W., Zhang, J., Zheng, H., 2021. Structure of African Swine Fever Virus and Associated Molecular Mechanisms Underlying Infection and Immunosuppression:A Review. Front. Immunol. 12, 715582.

    35. Yang, K., Huang, Q., Wang, R., Zeng, Y., Cheng, M., Xue, Y., Shi, C., Ye, L., Yang, W., Jiang, Y., Wang, J., Huang, H., Cao, X., Yang, G., Wang, C., 2021. African swine fever virus MGF505-11R inhibits type I interferon production by negatively regulating the cGAS-STING-mediated signaling pathway. Vet. Microb. 263, 109265.

    36. Yang, K., Xue, Y., Niu, H., Shi, C., Cheng, M., Wang, J., Zou, B., Wang, J., Niu, T., Bao, M., Yang, W., Zhao, D., Jiang, Y., Yang, G., Zeng, Y., Cao, X., Wang, C., 2022. African swine fever virus MGF360-11L negatively regulates cGAS-STING-mediated inhibition of type I interferon production. Vet. Res. 53, 7.

    37. Zhang, K., Yang, B., Shen, C., Zhang, T., Hao, Y., Zhang, D., Liu, H., Shi, X., Li, G., Yang, J., Li, D., Zhu, Z., Tian, H., Yang, F., Ru, Y., Cao, W.J., Guo, J., He, J., Zheng, H., Liu, X., 2022. MGF360-9L Is a Major Virulence Factor Associated with the African Swine Fever Virus by Antagonizing the JAK/STAT Signaling Pathway. mBio, 13, e0233021.

    38. Zhao, D., Liu, R., Zhang, X., Li, F., Wang, J., Zhang, J., Liu, X., Wang, L., Zhang, J., Wu, X., Guan, Y., Chen, W., Wang, X., He, X.,Bu, Z., 2019. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerg. Microb. Infect. 8, 438-447.

    39. Zhu, J.J., Ramanathan, P., Bishop, E.A., O'donnell, V., Gladue, D.P.,Borca, M.V., 2019. Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages. PloS ONE, 14, e0223955.

    40. Zsak, L., Lu, Z., Burrage, T.G., Neilan, J.G., Kutish, G.F., Moore, D.M.,Rock, D.L., 2001. African Swine Fever Virus Multigene Family 360 and 530 Genes Are Novel Macrophage Host Range Determinants. J. Virol. 75, 3066-3076.

    41. Zsak, L.,Neilan, J.G., 2002. Regulation of apoptosis in African swine fever virus-infected macrophages. ScientificWorldJournal, 2, 1186-1195.

  • 加载中
  • 10.1016j.virs.2022.11.009-ESM.pdf

Article Metrics

Article views(2240) PDF downloads(16) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Identification of African swine fever virus MGF505-2R as a potent inhibitor of innate immunity in vitro

      Corresponding author: Haixue Zheng, haixuezheng@163.com
      Corresponding author: Shuqi Xiao, xiaoshuqi@nwsuaf.edu.cn
    • a. College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China;
    • b. State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China;
    • c. College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China

    Abstract: African swine fever (ASF) is etiologically an acute, highly contagious and hemorrhagic disease caused by African swine fever virus (ASFV). Due to its genetic variation and phenotypic diversity, until now, no efficient commercial vaccines or therapeutic options are available. The ASFV genome contains a conserved middle region and two flexible ends that code for five multigene families (MGFs), while the biological functions of the MGFs are not fully characterized. Here, ASFV MGF505-2R-deficient mutant ASFV-Δ2R was constructed based on a highly virulent genotype II field isolate ASFV CN/GS/2018 currently circulating in China. Transcriptomic profiling demonstrated that ASFV-Δ2R was capable of inducing a larger number of differentially expressed genes (DEGs) compared with ASFV CN/GS/2018. Hierarchical clustering of up-regulated DEGs revealed that ASFV-Δ2R induced the most dramatic expression of interferon-related genes and inflammatory and innate immune genes, as further validated by RT-qPCR. The GO and KEGG pathway analysis identified significantly enriched pathways involved in pathogen recognition and innate antiviral immunity. Conversely, pharmacological activation of those antiviral immune responses by exogenous cytokines, including type I/II IFNs, TNF-α and IL-1β, exerted combinatory effects and synergized in antiviral capacity against ASFV replication. Collectively, MGF505-2R is a newly identified inhibitor of innate immunity potentially implicated in immune evasion.

    Reference (41) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return