Yaohui Fang, Jun Wang, Jianqing Sun, Zhengyuan Su, Shengyao Chen, Jian Xiao, Jun Ni, Zhihong Hu, Yubang He, Shu Shen and Fei Deng. RNA viromes of Dermacentor nuttalli ticks reveal a novel uukuvirus in Qīnghăi Province, China[J]. Virologica Sinica, 2024, 39(4): 537-545. doi: 10.1016/j.virs.2024.04.006
Citation: Yaohui Fang, Jun Wang, Jianqing Sun, Zhengyuan Su, Shengyao Chen, Jian Xiao, Jun Ni, Zhihong Hu, Yubang He, Shu Shen, Fei Deng. RNA viromes of Dermacentor nuttalli ticks reveal a novel uukuvirus in Qīnghăi Province, China .VIROLOGICA SINICA, 2024, 39(4) : 537-545.  http://dx.doi.org/10.1016/j.virs.2024.04.006

在青海省草原革蜱的病毒组中发现了一种新型的乌库病毒

cstr: 32224.14.j.virs.2024.04.006
  • 蜱虫是中国西部青藏高原地区的主要寄生虫,可能会给农业和畜牧业带来直接的经济损失。尽管已对威胁人类和动物的蜱传病原体进行了广泛的研究,但地方优势蜱种携带的病毒组成仍然未知。本研究采集了青海湖周边的草原革蜱,并通过宏基因组测序鉴定了属于至少6个病毒科的13种病毒。其中有4种病毒在蜱虫中的丰度最高,包括已知的Xīnjiāng tick-associated virus 1 (XJTAV1),以及三种新病毒:Qīnghǎi Lake virus 1,Qīnghǎi Lake virus 2 (QHLV1和QHLV2,未分类),和 Qīnghǎi Lake virus 3 (QHLV3,属于布尼亚病毒目,白纤病毒科,乌库病毒属)。这四种病毒在草原革蜱中广泛分布,它们的最小感染率分别为8.2%、49.5%、6.2%和24.7%。进一步,在二代测序数据中发现了一条序列疑似为QHLV3的M片段。生物信息学方法预测该片段编码病毒糖蛋白,且信号肽裁剪位点、N-糖基化位点和跨膜区等,均与白纤病毒科病毒糖蛋白有相似性。利用杆状病毒表达系统检测确认该蛋白具有N-糖基化修饰,并可被剪切。此外,在其他蜱虫病毒组的测序数据中,利用该M片段找到了与之序列相似的其他乌库病毒的M片段,而这些乌库病毒原本也被认为缺少M片段。本研究通过研究草原革蜱的病毒组,促进了我们对高原地区蜱传病毒多样性的认识。而QHLV3 M 片段的发现表明,提示之前认为缺少 M 片段的乌库病毒以及相似的布尼亚病毒应具有与典型布尼亚病毒相同的基因组结构。这将促进我们对乌库病毒遗传和进化的理解,并有助于新病毒的发现。

RNA viromes of Dermacentor nuttalli ticks reveal a novel uukuvirus in Qīnghăi Province, China

  • Ticks are a major parasite on the Qīnghăi-Tibet Plateau, western China, and represent an economic burden to agriculture and animal husbandry. Despite research on tick-borne pathogens that threaten humans and animals, the viromes of dominant tick species in this area remain unknown. In this study, we collected Dermacentor nuttalli ticks near Qīnghăi Lake and identified 13 viruses belonging to at least six families through metagenomic sequencing. Four viruses were of high abundance in pools, including Xīnjiāng tick-associated virus 1 (XJTAV1), and three novel viruses: Qīnghăi Lake virus 1, Qīnghăi Lake virus 2 (QHLV1, and QHLV2, unclassified), and Qīnghăi Lake virus 3 (QHLV3, genus Uukuvirus of family Phenuiviridae in order Bunyavirales), which lacks the M segment. The minimum infection rates of the four viruses in the tick groups were 8.2%, 49.5%, 6.2%, and 24.7%, respectively, suggesting the prevalence of these viruses in D. nuttalli ticks. A putative M segment of QHLV3 was identified from the next-generation sequencing data and further characterized for its signal peptide cleavage site, N-glycosylation, and transmembrane region. Furthermore, we probed the L, M, and S segments of other viruses from sequencing data of other tick pools by using the putative M segment sequence of QHLV3. By revealing the viromes of D. nuttalli ticks, this study enhances our understanding of tick-borne viral communities in highland regions. The putative M segment identified in a novel uukuvirus suggests that previously identified uukuviruses without M segments should have had the same genome organization as typical bunyaviruses. These findings will facilitate virus discovery and our understanding of the phylogeny of tick-borne uukuviruses.

  • 加载中
    1. Ambrose, R.L., Lander, G.C., Maaty, W.S., Bothner, B., Johnson, J.E., Johnson, K.N., 2009. Drosophila A virus is an unusual RNA virus with a T=3 icosahedral core and permuted RNA-dependent RNA polymerase. J. Gen. Virol. 90, 2191-2200.

    2. Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.

    3. Boulanger, N., Boyer, P., Talagrand-Reboul, E., Hansmann, Y., 2019. Ticks and tick-borne diseases. Med. Maladies Infect. 49, 87-97.

    4. Chitimia, L., Lin, R.Q., Cosoroaba, I., Braila, P., Song, H.Q., Zhu, X.Q., 2009. Molecular characterization of hard and soft ticks from Romania by sequences of the internal transcribed spacers of ribosomal DNA. Parasitol. Res. 105, 907-911.

    5. Dai, S., Zhang, T., Zhang, Y., Wang, H., Deng, F., 2018. Zika virus baculovirus-expressed virus-like particles induce neutralizing antibodies in mice. Virol. Sin. 33, 213-226.

    6. Dai, X., Shang, G., Lu, S., Yang, J., Xu, J., 2018. A new subtype of eastern tick-borne encephalitis virus discovered in Qinghai-Tibet Plateau, China. Emerg. Microb. Infect. 7, 74.

    7. Deng, G., 1978. Economic Insect Fauna of China. Science Press.

    8. Dong, Z., Yang, M., Wang, Z., Zhao, Shuo, Xie, S., Yang, Y., Liu, G., Zhao, Shanshan, Xie, J., Liu, Q., Wang, Y., 2021. Human tacheng tick virus 2 infection, China, 2019. Emerg. Infect. Dis. 27, 594-598.

    9. Eifan, S., Schnettler, E., Dietrich, I., Kohl, A., Blomstrom, A.-L., 2013. Non-structural proteins of arthropod-borne bunyaviruses: roles and functions. Viruses 5, 2447-2468.

    10. Geng, Z., Hou, X.X., Wan, K.L., Hao, Q., 2010. [Isolation and identification of Borrelia burgdorferi sensu lato from ticks in six provinces in China]. Zhonghua Liuxingbingxue Zazhi 31, 1346-1348.

    11. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., Regev, A., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652.

    12. Guardado-Calvo, P., Rey, F.A., 2017. The envelope proteins of the Bunyavirales. Adv. Virus Res., Vol 98 98, 83-118.

    13. Guu, T.S.Y., Zheng, W., Tao, Y.J., 2012. Bunyavirus: structure and replication. Adv. Exp. Med. Biol. 726, 245-266.

    14. Han, R., Yang, J., Niu, Q., Liu, Z., Chen, Z., Kan, W., Hu, G., Liu, G., Luo, J., Yin, H., 2018. Molecular prevalence of spotted fever group rickettsiae in ticks from Qinghai Province, northwestern China. Infect. Genet. Evol. 57, 1-7.

    15. Hedil, M., Kormelink, R., 2016. Viral RNA silencing suppression: the enigma of bunyavirus NSs proteins. Viruses 8, 208.

    16. Huson, D.H., Auch, A.F., Qi, J., Schuster, S.C., 2007. MEGAN analysis of metagenomic data. Genome Res. 17, 377-386.

    17. Jia, N., Wang, J., Shi, W., Du, L., Sun, Y., Zhan, W., Jiang, J.F., Wang, Q., Zhang, B., Ji, P., Bell-Sakyi, L., Cui, X.M., Yuan, T.T., Jiang, B.G., Yang, W.F., Lam, T.T.Y., Chang, Q.C., Ding, S.J., Wang, X.J., Zhu, J.G., et al., 2020. Large-scale comparative analyses of tick genomes elucidate their genetic diversity and vector capacities. Cell 182, 1328-1340.e13.

    18. Kholodilov, I., Belova, O., Burenkova, L., Korotkov, Y., Romanova, L., Morozova, L., Kudriavtsev, V., Gmyl, L., Belyaletdinova, I., Chumakov, A., Chumakova, N., Dargyn, O., Galatsevich, N., Gmyl, A., Mikhailov, M., Oorzhak, N., Polienko, A., Saryglar, A., Volok, V., Yakovlev, A., Karganova, G., 2019. Ixodid ticks and tick-borne encephalitis virus prevalence in the South Asian part of Russia (Republic of Tuva). Ticks and Tick-borne Dis. 10, 959-969.

    19. Kholodilov, I.S., Belova, O.A., Morozkin, E.S., Litov, A.G., Ivannikova, A.Y., Makenov, M.T., Shchetinin, A.M., Aibulatov, S.V., Bazarova, G.K., Bell-Sakyi, L., et al., 2021. Geographical and tick-dependent distribution of flavi-like alongshan and yanggou tick viruses in Russia. Viruses 13, 458.

    20. Kuhn, J.H., Abe, J., Adkins, S., Alkhovsky, S.V., Avsic-Zupanc, T., Ayllon, M.A., Bahl, J., Balkema-Buschmann, A., Ballinger, M.J., Kumar Baranwal, V., et al., 2023. Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: kingdom Orthornavirae: phylum Negarnaviricota). J. Gen. Virol. 104, 001864.

    21. Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359.

    22. Li, C.X., Shi, M., Tian, J.H., Lin, X.D., Kang, Y.J., Chen, L.J., Qin, X.C., Xu, J., Holmes, E.C., Zhang, Y.Z., 2015. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife 4, e05378.

    23. Li, Y., Liu, P., Wang, C., Chen, G., Kang, M., Liu, D., Li, Z., He, H., Dong, Y., Zhang, Y., 2015. Serologic evidence for Babesia bigemina infection in wild yak (Bos mutus) in Qinghai province, China. J. Wildl. Dis. 51, 872-875.

    24. Liu, X., Zhang, X., Wang, Z., Dong, Z., Xie, S., Jiang, M., Song, R., Ma, J., Chen, S., Chen, K., Zhang, H., Si, X., Li, C., Jin, N., Wang, Y., Liu, Q., 2020. A tentative tamdy orthonairovirus related to febrile illness in northwestern China. Clin. Infect. Dis. 70, 2155-2160.

    25. Lopez, Y., Miranda, J., Mattar, S., Gonzalez, M., Rovnak, J., 2020. First report of lihan tick virus (phlebovirus, Phenuiviridae) in ticks, Colombia. Virol. J. 17, 63.

    26. Lu, X., Lin, X.D., Wang, J.B., Qin, X.C., Tian, J.H., Guo, W.P., Fan, F.N., Shao, R., Xu, J., Zhang, Y.Z., 2013. Molecular survey of hard ticks in endemic areas of tick-borne diseases in China. Ticks Tick Borne Dis. 4, 288-296.

    27. Shen, S., Duan, X., Wang, B., Zhu, L., Zhang, Y., Zhang, J., Wang, J., Luo, T., Kou, C., Liu, D., Lv, C., Zhang, L., Chang, C., Su, Z., Tang, S., Qiao, J., Moming, A., Wang, C., Abudurexiti, A., Wang, H., Hu, Z., Zhang, Y., Sun, S., Deng, F., 2018. A novel tick-borne phlebovirus, closely related to severe fever with thrombocytopenia syndrome virus and Heartland virus, is a potential pathogen. Emerg. Microb. Infect. 7, 95.

    28. Shi, M., Lin, X.D., Tian, J.H., Chen, L.J., Chen, X., Li, C.X., Qin, X.C., Li, J., Cao, J.P., Eden, J.S., Buchmann, J., Wang, W., Xu, J., Holmes, E.C., Zhang, Y.Z., 2016. Redefining the invertebrate RNA virosphere. Nature 540, 539-543.

    29. Sun, Y., Li, J., Gao, G.F., Tien, P., Liu, W., 2018. Bunyavirales ribonucleoproteins: the viral replication and transcription machinery. Crit. Rev. Microbiol. 44, 522-540.

    30. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.

    31. Tokarz, R., Williams, S.H., Sameroff, S., Sanchez Leon, M., Jain, K., Lipkin, W.I., 2014. Virome analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis ticks reveals novel highly divergent vertebrate and invertebrate viruses. J. Virol. 88, 11480-11492.

    32. Xia, Y., 2020. Correlation and association analyses in microbiome study integrating multiomics in health and disease. Prog. Mol. Biol. Transl. Sci. 171, 309-491.

    33. Xiao, J., Yao, X., Guan, X., Xiong, J., Fang, Y., Zhang, J., Zhang, Y., Moming, A., Su, Z., Jin, J., Ge, Y., Wang, J., Fan, Z., Tang, S., Shen, S., Deng, F., 2024. Viromes of Haemaphysalis longicornis reveal different viral abundance and diversity in free and engorged ticks. Virol. Sin, https://doi.org/ 10.1016/j.virs.2024.02.003.

    34. Yang, Y., Diwu, J., Cao, J., Zhang, Jijun, Luo, X., Gao, X., Qiang, L.I., Zhang, Junmin, 2008. Investigation on kinds and nature geographic distribution of ticks in Qinghai province. Chin. J. Hyg. Insect. Equip. 14, 201-203.

    35. Ye, R.Z., Li, Y.Y., Xu, D.L., Wang, B.H., Wang, X.Y., Zhang, M.Z., Wang, N., Gao, W.Y., Li, C., Han, X.Y., Du, L.F., Xia, L.Y., Song, K., Xu, Q., Liu, J., Cheng, N., Li, Z.H., Du, Y.D., Yu, H.J., Shi, X.Y., Jiang, J.F., Sun, Y., Tick Genome and Microbiome Consortium (TIGMIC), Cui, X.M., Ding, S.J., Zhao, L., Cao, W.C., 2024. Virome diversity shaped by genetic evolution and ecological landscape of Haemaphysalis longicornis. Microbiome 12, 35.

    36. Yin, H., Luo, J., Schnittger, L., Lu, B., Beyer, D., Ma, M., Guan, G., Bai, Q., Lu, C., Ahmed, J., 2004. Phylogenetic analysis of Theileria species transmitted by Haemaphysalis qinghaiensis. Parasitol. Res. 92, 36-42.

    37. Yu, Z., Wang, H., Wang, T., Sun, W., Yang, X., Liu, J., 2015. Tick-borne pathogens and the vector potential of ticks in China. Parasites Vectors 8, 24.

    38. Zhang, Y., Hu, B., Agwanda, B., Fang, Y., Wang, J., Kuria, S., Yang, J., Masika, M., Tang, S., Lichoti, J., Fan, Z., Shi, Z., Ommeh, S., Wang, H., Deng, F., Shen, S., 2021. Viromes and surveys of RNA viruses in camel-derived ticks revealing transmission patterns of novel tick-borne viral pathogens in Kenya. Emerg. Microb. Infect. 10, 1975-1987.

    39. Zhao, J., Wang, H., Wang, Y., 2012. Regional distribution profiles of tick-borne pathogens in China. Chin. J. Vector Biol. Control 23, 445-448.

    40. Zhao, Y., Li, M.C., Konate, M.M., Chen, L., Das, B., Karlovich, C., Williams, P.M., Evrard, Y.A., Doroshow, J.H., McShane, L.M., 2021. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. J. Transl. Med. 19, 269.

    41. Zhu, C.Q., He, T., Wu, T., Ai, L.L., Hu, D., Yang, X.H., Lv, R.C., Yang, L., Lv, H., Tan, W.L., 2020. Distribution and phylogenetic analysis of Dabieshan tick virus in ticks collected from Zhoushan, China. J. Vet. Med. Sci. 82, 1226-1230.

  • 加载中
  • 10.1016j.virs.2024.04.006-ESM.docx

Figures(1)

Article Metrics

Article views(1114) PDF downloads(10) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    RNA viromes of Dermacentor nuttalli ticks reveal a novel uukuvirus in Qīnghăi Province, China

      Corresponding author: Shu Shen, shenshu@wh.iov.cn
      Corresponding author: Fei Deng, df@wh.iov.cn
    • a. Key Laboratory of Special Pathogens and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
    • b. University of Chinese Academy of Sciences, Beijing 101408, China;
    • c. Qīnghăi Lake National Nature Reserve Administration, Xining 810000, China;
    • d. Hubei Jiangxia Laboratory, Wuhan 430200, China;
    • e. Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, 830002, China

    Abstract: Ticks are a major parasite on the Qīnghăi-Tibet Plateau, western China, and represent an economic burden to agriculture and animal husbandry. Despite research on tick-borne pathogens that threaten humans and animals, the viromes of dominant tick species in this area remain unknown. In this study, we collected Dermacentor nuttalli ticks near Qīnghăi Lake and identified 13 viruses belonging to at least six families through metagenomic sequencing. Four viruses were of high abundance in pools, including Xīnjiāng tick-associated virus 1 (XJTAV1), and three novel viruses: Qīnghăi Lake virus 1, Qīnghăi Lake virus 2 (QHLV1, and QHLV2, unclassified), and Qīnghăi Lake virus 3 (QHLV3, genus Uukuvirus of family Phenuiviridae in order Bunyavirales), which lacks the M segment. The minimum infection rates of the four viruses in the tick groups were 8.2%, 49.5%, 6.2%, and 24.7%, respectively, suggesting the prevalence of these viruses in D. nuttalli ticks. A putative M segment of QHLV3 was identified from the next-generation sequencing data and further characterized for its signal peptide cleavage site, N-glycosylation, and transmembrane region. Furthermore, we probed the L, M, and S segments of other viruses from sequencing data of other tick pools by using the putative M segment sequence of QHLV3. By revealing the viromes of D. nuttalli ticks, this study enhances our understanding of tick-borne viral communities in highland regions. The putative M segment identified in a novel uukuvirus suggests that previously identified uukuviruses without M segments should have had the same genome organization as typical bunyaviruses. These findings will facilitate virus discovery and our understanding of the phylogeny of tick-borne uukuviruses.

    Figure (1)  Reference (41) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return