. doi: 10.1016/j.virs.2024.04.008
Citation: Yifan Wu, Yousong Peng. Ten computational challenges in human virome studies .VIROLOGICA SINICA, 2024, 39(6) : 845-850.  http://dx.doi.org/10.1016/j.virs.2024.04.008

人体病毒组研究中的十个计算生物学问题

cstr: 32224.14.j.virs.2024.04.008
  • 通讯作者: 彭友松, pys2013@hnu.edu.cn
  • 收稿日期: 2024-01-10
    录用日期: 2024-04-25
  • 近年来,针对人体病毒组的多样性以及病毒组在人类健康和疾病中错综复杂的作用方面的研究取得了重大进展。然而,相比宏基因组研究,人体病毒组研究仍处于初期阶段,其中最重要的一个原因是缺乏有效的方法,特别是计算方面的方法。本文系统地概述了病毒组学研究中涉及的十个计算生物学方面的挑战。造成这些挑战的原因多样,包括病毒组的巨大多样性、病毒基因组中缺乏通用标记基因、病毒群体的低丰度、病毒蛋白与已知蛋白的远同源性、病毒组的高度动态和异质性等等。针对每个挑战,我们讨论了其产生原因、当前研究进展以及潜在解决思路。我们认为解决这些挑战需要计算生物学、病毒学和其他多个跨学科研究人员之间的持续合作。总的来说,本论文可以作为人体病毒组研究中的计算生物学研究指南。

Ten computational challenges in human virome studies

  • Corresponding author: Yousong Peng, pys2013@hnu.edu.cn
  • Received Date: 10 January 2024
    Accepted Date: 25 April 2024
  • In recent years, substantial advancements have been achieved in understanding the diversity of the human virome and its intricate roles in human health and diseases. Despite this progress, the field of human virome research remains nascent, primarily hindered by the lack of effective methods, particularly in the domain of computational tools. This perspective systematically outlines ten computational challenges spanning various types of virome studies. These challenges arise due to the vast diversity of viromes, the absence of a universal marker gene in viral genomes, the low abundance of virus populations, the remote or minimal homology of viral proteins to known proteins, and the highly dynamic and heterogeneous nature of viromes. For each computational challenge, we discuss the underlying reasons, current research progress, and potential solutions. The resolution of these challenges necessitates ongoing collaboration among computational scientists, virologists, and multidisciplinary experts. In essence, this perspective serves as a comprehensive guide for directing computational efforts in human virome studies.

  • 加载中
    1. Bhagchandani T, Nikita, Verma A, Tandon R. 2023. Exploring the human virome: composition, dynamics, and implications for health and disease. Curr. Microbiol. 81, 16.

    2. Brierley L, Pedersen AB, Woolhouse MEJ. 2019. Tissue tropism and transmission ecology predict virulence of human rna viruses. PLoS Biol. 17, e3000206.

    3. Brum JR, Ignacio-Espinoza JC, Kim EH, Trubl G, Jones RM, Roux S, VerBerkmoes NC, Rich VI, Sullivan MB. 2016. Illuminating structural proteins in viral "dark matter" with metaproteomics. Proc. Natl. Acad. Sci. U.S.A. 113, 2436-2441.

    4. Cai Z, Fu P, Xu L, Deng L, Peng Y. 2023. Systematic identification and characterization of viral small rnas from small rna-seq data. J. Med. Virol. 95: e28617.

    5. Chaffringeon L, Lamy-Besnier Q, Debarbieux L, De Sordi L. 2021. The intestinal virome: lessons from animal models. Curr. Opin. Virol. 51: 141-148.

    6. Chen J, Sun C, Dong Y, Jin M, Lai S, Jia L, Zhao X, Wang H, Gao NL, Bork P, Liu Z, Chen WH, Zhao XM. 2024. Efficient recovery of complete gut viral genomes by combined short- and long-read sequencing. Adv. Sci. 11, e2305818.

    7. Davis HE, McCorkell L, Vogel JM, Topol EJ. 2023. Long covid: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133-146.

    8. Eloe-Fadrosh EA. 2019. Towards a genome-based virus taxonomy. Nat. Microbiol. 4, 1249-1250.

    9. Ezzatpour S, Mondragon Portocarrero ADC, Cardelle-Cobas A, Lamas A, Lopez-Santamarina A, Miranda JM, Aguilar HC. 2023. The human gut virome and its relationship with nontransmissible chronic diseases. Nutrients. 15, 977.

    10. Fang LZ, Dong YH, Yan ZJ, Zhou CM, Yu XJ, Qin XR. 2023. Reactivation of epstein-barr virus in sftsv infected patients. Infect. Med. 2, 195-201.

    11. Flamholz ZN, Biller SJ, Kelly L. 2024. Large language models improve annotation of prokaryotic viral proteins. Nat. Microbiol. 9, 537-549.

    12. Fu P, Cai Z, Zhang Z, Meng X, Peng Y. 2023a. An updated database of virus circular rnas provides new insights into the biogenesis mechanism of the molecule. Emerg. Microb. Infect. 12, 2261558.

    13. Fu P, Wu Y, Zhang Z, Qiu Y, Wang Y, Peng Y. 2023b. Viga: a one-stop tool for eukaryotic virus identification and genome assembly from next-generation-sequencing data. Briefings Bioinf. 25, bbad444.

    14. Gore EJ, Gard L, Niesters HGM, Van Leer Buter CC. 2023. Understanding torquetenovirus (ttv) as an immune marker. Front. Med. 10, 1168400.

    15. Guo G, Ye L, Shi X, Yan K, Huang J, Lin K, Xing D, Ye S, Wu Y, Li B, Chen C, Xue X, Zhang H. 2020. Dysbiosis in peripheral blood mononuclear cell virome associated with systemic lupus erythematosus. Front. Cell. Infect. Microbiol. 10, 131.

    16. Hernandez-Alias X, Benisty H, Schaefer MH, Serrano L. 2021. Translational adaptation of human viruses to the tissues they infect. Cell Rep. 34, 108872.

    17. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. 2021. Highly accurate protein structure prediction with alphafold. Nature. 596, 583-589.

    18. Khan Mirzaei M, Xue J, Costa R, Ru J, Schulz S, Taranu ZE, Deng L. 2021. Challenges of studying the human virome - relevant emerging technologies. Trends Microbiol. 29, 171-181.

    19. Levine KS, Leonard HL, Blauwendraat C, Iwaki H, Johnson N, Bandres-Ciga S, Ferrucci L, Faghri F, Singleton AB, Nalls MA. 2023. Virus exposure and neurodegenerative disease risk across national biobanks. Neuron. 111, 1086-1093 e1082.

    20. Liang G, Bushman FD. 2021. The human virome: assembly, composition and host interactions. Nat. Rev. Microbiol. 19, 514-527.

    21. Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, Smetanin N, Verkuil R, Kabeli O, Shmueli Y, Dos Santos Costa A, Fazel-Zarandi M, Sercu T, Candido S, Rives A. 2023. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science. 379, 1123-1130.

    22. Lu C, Peng Y. 2021. Computational viromics: applications of the computational biology in viromics studies. Virol. Sin. 36, 1256-1260.

    23. Lu C, Zhang Z, Cai Z, Zhu Z, Qiu Y, Wu A, Jiang T, Zheng H, Peng Y. 2021. Prokaryotic virus host predictor: a Gaussian model for host prediction of prokaryotic viruses in metagenomics. BMC Biol. 19, 5.

    24. Lu C, Wu Y, Mao L, Ge X, Wu A, Deng L, Sun F, Jiang Y, Peng Y. 2022. Exploring the genome and protein space of viruses. bioRxiv. https://doi.org/10.1101/2022.11.05.515293.

    25. Madhogaria B, Bhowmik P, Kundu A. 2022. Correlation between human gut microbiome and diseases. Infect. Med. 1, 180-191.

    26. Masson P, Hulo C, De Castro E, Bitter H, Gruenbaum L, Essioux L, Bougueleret L, Xenarios I, Le Mercier P. 2013. Viralzone: recent updates to the virus knowledge resource. Nucleic Acids Res. 41, D579-D583.

    27. Matchado MS, Lauber M, Reitmeier S, Kacprowski T, Baumbach J, Haller D, List M. 2021. Network analysis methods for studying microbial communities: a mini review. Comput. Struct. Biotechnol. J. 19, 2687-2698.

    28. Matthijnssens J, Adriaenssens E. 2023. Editorial overview: the virome in health and disease (2022). Curr. Opin. Virol. 63, 101376.

    29. Nayfach S, Paez-Espino D, Call L, Low SJ, Sberro H, Ivanova NN, Proal AD, Fischbach MA, Bhatt AS, Hugenholtz P, Kyrpides NC. 2021. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 6, 960-970.

    30. NIH, 2022. Human virome program. https://commonfund.nih.gov/humanvirome (accessed 29 February 2004).

    31. NSFC, 2023. Human virome project. https://www.nsfc.gov.cn/publish/portal0/tab442/info90270.htm (accessed 29 February 2004).

    32. Peng Y, Zhu W, Feng Z, Zhu Z, Zhang Z, Chen Y, Liu S, Wu A, Wang D, Shu Y, Jiang T. 2020. Identification of genome-wide nucleotide sites associated with mammalian virulence in influenza a viruses. Biosaf. Heal. 2, 7.

    33. Shah SA, Deng L, Thorsen J, Pedersen AG, Dion MB, Castro-Mejia JL, Silins R, Romme FO, Sausset R, Jessen LE, Ndela EO, Hjelmso M, Rasmussen MA, Redgwell TA, Leal Rodriguez C, Vestergaard G, Zhang Y, Chawes B, Bonnelykke K, Sorensen SJ, Bisgaard H, Enault F, Stokholm J, Moineau S, Petit MA, Nielsen DS. 2023. Expanding known viral diversity in the healthy infant gut. Nat. Microbiol. 8, 986-998.

    34. Teuliere J, Bernard C, Bonnefous H, Martens J, Lopez P, Bapteste E. 2023. Interactomics: dozens of viruses, co-evolving with humans, including the influenza a virus, may actively distort human aging. Mol. Biol. Evol. 40, msad012.

    35. Wahida A, Tang F, Barr JJ. 2021. Rethinking phage-bacteria-eukaryotic relationships and their influence on human health. Cell Host Microbe. 29, 681-688.

    36. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, Sheng J, Quan L, Xia Z, Tan W, Cheng G, Jiang T. 2020. Genome composition and divergence of the novel coronavirus (2019-ncov) originating in China. Cell Host Microbe. 27, 325-328.

    37. Wu, Y., Zhang, Z., Liu, X., Qiu, Y., Ge, X.-Y., Miao, Z., Meng, X., Peng, Y., 2023. Virome analysis provides new insights into the pathogenesis mechanism and treatment of sle disease. bioRxiv. https://doi.org/10.1101/2023.10.25.564084.

    38. Ye S, Lu C, Qiu Y, Zheng H, Ge X, Wu A, Xia Z, Jiang T, Zhu H, Peng Y. 2022. An atlas of human viruses provides new insights into diversity and tissue tropism of human viruses. Bioinformatics. 38, 3087-3093.

    39. Yu R, Huang J, Peng H, Yin S, Xie W, Ren S, Peng XE. 2023. Association between hepatitis b virus and gastric cancer: a systematic review and meta-analysis. Infect. Med. 2, 67-73.

    40. Zhang Y, Ji L, Wen H, Chu Y, Xing W, Tian G, Yao Y, Yang J. 2023. Pan-cancer analyses reveal the stratification of patient prognosis by viral composition in tumor tissues. Comput. Biol. Med. 167, 107586.

    41. Zhao L, Shi Y, Lau HC, Liu W, Luo G, Wang G, Liu C, Pan Y, Zhou Q, Ding Y, Sung JJ, Yu J. 2022. Uncovering 1058 novel human enteric DNA viruses through deep long-read third-generation sequencing and their clinical impact. Gastroenterology. 163, 699-711.

  • 加载中

Figures(1)

Article Metrics

Article views(489) PDF downloads(11) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Ten computational challenges in human virome studies

      Corresponding author: Yousong Peng, pys2013@hnu.edu.cn
    • Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China

    Abstract: In recent years, substantial advancements have been achieved in understanding the diversity of the human virome and its intricate roles in human health and diseases. Despite this progress, the field of human virome research remains nascent, primarily hindered by the lack of effective methods, particularly in the domain of computational tools. This perspective systematically outlines ten computational challenges spanning various types of virome studies. These challenges arise due to the vast diversity of viromes, the absence of a universal marker gene in viral genomes, the low abundance of virus populations, the remote or minimal homology of viral proteins to known proteins, and the highly dynamic and heterogeneous nature of viromes. For each computational challenge, we discuss the underlying reasons, current research progress, and potential solutions. The resolution of these challenges necessitates ongoing collaboration among computational scientists, virologists, and multidisciplinary experts. In essence, this perspective serves as a comprehensive guide for directing computational efforts in human virome studies.

    Figure (1)  Reference (41) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return