Xuanxuan Li, Zefeng Dong, Jiaming Li, Chuanran Dou, Deyu Tian, Zhenghai Ma, Wenjun Liu, George F. Gao and Yuhai Bi. Genetic characteristics of H1N1 influenza virus outbreak in China in early 2023[J]. Virologica Sinica, 2024, 39(3): 520-523. doi: 10.1016/j.virs.2024.05.003
Citation: Xuanxuan Li, Zefeng Dong, Jiaming Li, Chuanran Dou, Deyu Tian, Zhenghai Ma, Wenjun Liu, George F. Gao, Yuhai Bi. Genetic characteristics of H1N1 influenza virus outbreak in China in early 2023 .VIROLOGICA SINICA, 2024, 39(3) : 520-523.  http://dx.doi.org/10.1016/j.virs.2024.05.003

2023年初中国H1N1流感病毒的遗传特征

cstr: 32224.14.j.virs.2024.05.003
  • 通讯作者: 毕玉海, beeyh@im.ac.cn
  • 收稿日期: 2023-10-25
    录用日期: 2024-05-09
  • 为探究新冠肺炎防控政策优化后H1N1流感病毒的遗传特征,本研究对我国2023年第一季度湖南省和江苏省采集的48株H1N1流感病毒进行了遗传进化分析。通过对HA基因的系统发育树和抗原位点分析,我们发现了新冠肺炎防控政策优化后流行的H1N1病毒与当时使用或下一年度推荐的疫苗株之间存在不匹配的现象,提示急需一个更加精确的疫苗更新计划。

Genetic characteristics of H1N1 influenza virus outbreak in China in early 2023

  • Corresponding author: Yuhai Bi, beeyh@im.ac.cn
  • Received Date: 25 October 2023
    Accepted Date: 09 May 2024
  • Highlights
    1. H1N1 strains were collected from Hunan and Jiangsu provinces in early 2023 following the optimized COVID-19 strategy.
    2. Phylogenic analysis revealed that the epidemic H1N1 viruses fell into different HA clades compared to vaccine strains.
    3. Mutations on HA antigenic sites suggest antigenic drift in the epidemic H1N1 viruses versus vaccine strains.
    4. A potential mismatch was found between recommended vaccine strains and the epidemic H1N1 viruses.
    5. The expeditious, precise, and personalized vaccine update program for influenza virus may need to be put on the agenda.

  • 加载中
    1. Bi,Y., Chen, Q., Wang, Q., Chen, J., Jin, T., Wong, G., Quan, C., Liu, J., Wu, J., Yin, R., Zhao, L., Li, M., Ding, Z., Zou, R., Xu, W., Li, H., Wang, H., Tian, K., Fu, G., Yu, H., Alexander, S., Li, S., Xu, B., Yu, H., Luo, T., Lu, X., Xu, X., Luo, Y., Liu, Y., Shi, W., Liu, D., Gao, G.F., 2016. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China. Cell Host Microbe 20, 810-821.

    2. Bi, Y., Li, J., Li, S., Fu, G., Jin, T., Zhang, C., Yang, Y., Ma, Z., Tian, W., Li, J.D., Xiao, S., Li, L., Yin, R., Zhang, Y., Wang, L., Qin, Y., Yao, Z., Meng, F., Hu, D., Li, D., Wong, G., Liu, F., Lv, N., Wang, L., Fu, L., Yang, Y., Peng, Y., Ma, J., Sharshov, K., Shestopalov, A., Gulyaeva, M., Gao, G.F., Chen, J., Shi, Y., Liu, W.J., Chu, D., Huang, Y., Liu, Y., Liu, L., Liu, W., Chen, Q., Shi, W., 2020. Dominant subtype switch in avian influenza viruses during 2016-2019 in China. Nat. Commun. 11, 5909.

    3. Hay, A.J., Gregory, V., Douglas, A.R., Lin, Y., 2001. The evolution of human influenza viruses. Phil. Trans. Roy. Soc. Lond. B 356(1416), 1861-1870.

    4. Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120.

    5. Liu, M., Liu, J., Song, W., Peng, Y., Ding, X., Deng, L., Jiang, T., 2023. Development of PREDAC-H1pdm to model the antigenic evolution of influenza A/(H1N1) pdm09 viruses. Virol. Sin. 38, 541-548.

    6. Mohan, T., Nguyen, H.T., Kniss, K., Mishin, V.P., Merced-Morales, A.A., Laplante, J., St George, K., Blevins, P., Chesnokov, A., De La Cruz, J.A., Kondor, R., Wentworth, D.E., Gubareva, L.V., 2021. Cluster of oseltamivir-resistant and hemagglutinin antigenically drifted influenza A (H1N1) pdm09 viruses, Texas, USA, January 2020. Emerg. Infect. Dis. 27, 1953-1957.

    7. Naffakh, N., Werf, S.V.D., 2009. April 2009: an outbreak of swine-origin influenza A (H1N1) virus with evidence for human-to-human transmission. Microb. Infect. 11, 725-728.

    8. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team, 2009. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N. Engl. J. Med. 360, 2605-2615.

    9. Olsen, S.J., Winn, A.K., Budd, A.P., Prill, M.M., Steel, J., Midgley, C.M., Kniss, K., Burns, E., Rowe, T., Foust, A., Jasso, G., Merced-Morales, A., Davis, C.T., Jang, Y., Jones, J., Daly, P., Gubareva, L., Barnes, J., Kondor, R., Sessions, W., Smith, C., Wentworth, D.E., Garg, S., Havers, F.P., Fry, A.M., Hall, A.J., Brammer, L., Silk, B.J., 2021. Changes in influenza and other respiratory virus activity during the COVID-19 pandemic-United States, 2020-2021. MMWR Morb. Mortal. Wkly. Rep. 70, 1013-1019.

    10. Palese, P., 2004. Influenza: old and new threats. Nat. Med. 10(Suppl. 12), S82-S87.

    11. Razzaghi, H., Srivastav, A., Perio, M.A., Laney, A.S., Black, C.L., 2022. Influenza and COVID-19 vaccination coverage among health care personnel-United States, 2021-22. MMWR Morb. Mortal. Wkly. Rep. 71, 1319-1326.

    12. Sooryanarain, H., Elankumaran, S., 2015. Environmental role in influenza virus outbreaks. Annu. Rev. Anim. Biosci. 3(1), 347-373.

    13. Whitley, R.J., Boucher, C.A., Lina, B., Nguyen-Van-Tam, J.S., Osterhaus, A., Schutten, M., Monto, A.S., 2013. Global assessment of resistance to neuraminidase inhibitors, 2008-2011: the influenza resistance information study (IRIS). Clin. Infect. Dis. 56, 1197-1205.

    14. Wilson, I.A, Skehel, J.J., Wiley, D.C., 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289(5796), 366-373.

    15. World Health Organization (WHO), 2023a. Influenza Laboratory Surveillance Information. [accessed 13 June 2023; Available from: https://www.who.int/tools/flunet.

    16. World Health Organization (WHO), 2023b. Recommended Composition of Influenza Virus Vaccines for Use in the 2023-2024 Northern Hemisphere Influenza Season. [accessed 13 June 2023; Available from: https://www.who.int/publications/m/item/recommended-composition-of-influenza-virus-vaccines-for-use-in-the-2023-2024-northern-hemisphere-influenza-season.

    17. Xu, H., Palpant, T., Weinberger, C., Shaw, D.E., 2022. Characterizing receptor flexibility to predict mutations that lead to human adaptation of influenza hemagglutinin. J. Chem. Theor. Comput. 18, 4995-5005.

    18. Yang, J., Gong, Y., Zhang, C., Sun, J., Wong, G., Shi, W., Liu, W., Gao, G.F., Bi, Y., 2022. Co-existence and co-infection of influenza a viruses and coronaviruses: public health challenges. Innovation. 3, 100306.

  • 加载中
  • 10.1016j.virs.2024.05.003-ESM.docx

Figures(1)

Article Metrics

Article views(4457) PDF downloads(15) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Genetic characteristics of H1N1 influenza virus outbreak in China in early 2023

      Corresponding author: Yuhai Bi, beeyh@im.ac.cn
    • a. College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China;
    • b. CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China;
    • c. Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China;
    • d. Lafayette College, Easton, PA 18042, USA;
    • e. University of Chinese Academy of Sciences, Beijing, 100049, China;
    • f. D. H. Chen School of Universal Health, Zhejiang University, Hangzhou 310058, China

    Abstract: Highlights
    1. H1N1 strains were collected from Hunan and Jiangsu provinces in early 2023 following the optimized COVID-19 strategy.
    2. Phylogenic analysis revealed that the epidemic H1N1 viruses fell into different HA clades compared to vaccine strains.
    3. Mutations on HA antigenic sites suggest antigenic drift in the epidemic H1N1 viruses versus vaccine strains.
    4. A potential mismatch was found between recommended vaccine strains and the epidemic H1N1 viruses.
    5. The expeditious, precise, and personalized vaccine update program for influenza virus may need to be put on the agenda.

    Figure (1)  Reference (18) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return