Junsen Chen, Junqing Sun, Zepeng Xu, Linjie Li, Xinrui Kang, Chunliang Luo, Qi Wang, Xueyang Guo, Yan Li, Kefang Liu and Ying Wu. The binding and structural basis of fox ACE2 to RBDs from different sarbecoviruses[J]. Virologica Sinica, 2024, 39(4): 609-618. doi: 10.1016/j.virs.2024.06.004
Citation: Junsen Chen, Junqing Sun, Zepeng Xu, Linjie Li, Xinrui Kang, Chunliang Luo, Qi Wang, Xueyang Guo, Yan Li, Kefang Liu, Ying Wu. The binding and structural basis of fox ACE2 to RBDs from different sarbecoviruses .VIROLOGICA SINICA, 2024, 39(4) : 609-618.  http://dx.doi.org/10.1016/j.virs.2024.06.004

不同沙贝病毒RBD与狐狸ACE2的受体结合及分子机制

cstr: 32224.14.j.virs.2024.06.004
  • 研究发现狐狸具备自然感染SARS-CoV和SARS-CoV-2的能力,实验室攻毒实验也证明狐狸可以感染SARS-CoV-2。本研究评估了狐狸ACE2与SARS-CoV、SARS-CoV-2和动物源性冠状病毒等重要的沙贝病毒(sarbecoviruses)的受体结合区(RBD)的结合能力。本研究结果表明,狐狸ACE2与检测的沙贝病毒RBD均能够结合,但亲和力有所差异。通过冷冻电镜技术解析了狐狸ACE2与SARS-CoV、SARS-CoV-2 原型和Omicron BF.7的RBD的复合物结构。通过结构分析,我们发现K417突变削弱SARS-CoV-2 RBD与狐狸ACE2的结合能力。此外,SARS-CoV RBD中的Y498残基在形成与狐狸ACE2受体的关键阳离子-π相互作用中发挥着至关重要的作用。与SARS-CoV-2原型RBD相比,这种相互作用是狐狸ACE2与SARS-CoV RBD亲和力更高的主要决定因素。这些结果进一步阐释了冠状病毒跨种识别的分子机制,提示狐狸可能是多种沙贝病毒的潜在宿主,需加强对狐狸携带冠状病毒的监测,以防病毒外溢,引起新的大流行。

The binding and structural basis of fox ACE2 to RBDs from different sarbecoviruses

  • Foxes are susceptible to SARS-CoV-2 in laboratory settings, and there have also been reports of natural infections of both SARS-CoV and SARS-CoV-2 in foxes. In this study, we assessed the binding capacities of fox ACE2 to important sarbecoviruses, including SARS-CoV, SARS-CoV-2, and animal-origin SARS-CoV-2 related viruses. Our findings demonstrated that fox ACE2 exhibits broad binding capabilities to receptor-binding domains (RBDs) of sarbecoviruses. We further determined the cryo-EM structures of fox ACE2 complexed with RBDs of SARS-CoV, SARS-CoV-2 prototype (PT), and Omicron BF.7. Through structural analysis, we identified that the K417 mutation can weaken the ability of SARS-CoV-2 sub-variants to bind to fox ACE2, thereby reducing the susceptibility of foxes to SARS-CoV-2 sub-variants. In addition, the Y498 residue in the SARS-CoV RBD plays a crucial role in forming a vital cation-π interaction with K353 in the fox ACE2 receptor. This interaction is the primary determinant for the higher affinity of the SARS-CoV RBD compared to that of the SARS-CoV-2 PT RBD. These results indicate that foxes serve as potential hosts for numerous sarbecoviruses, highlighting the critical importance of surveillance efforts.

  • 加载中
    1. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., Zwart, P. H., 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr, 66: 213-221.

    2. Bepler, T., Morin, A., Rapp, M., Brasch, J., Shapiro, L., Noble, A. J., Berger, B., 2019. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat Methods, 16: 1153-1160.

    3. Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., Richardson, D. C., 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr, 66: 12-21.

    4. Cui, S., Liu, Y., Zhao, J., Peng, X., Lu, G., Shi, W., Pan, Y., Zhang, D., Yang, P., Wang, Q., 2022. An updated review on SARS-CoV-2 infection in animals. Viruses, 14: 1527.

    5. Emsley, P., Lohkamp, B., Scott, W. G., Cowtan, K., 2010. Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 66: 486-501.

    6. Gao, G. F., Wang, L., 2021. COVID-19 expands its territories from humans to animals. China CDC Weekly, 3: 855-858.

    7. Gu, H., Chen, Q., Yang, G., He, L., Fan, H., Deng, Y. Q., Wang, Y., Teng, Y., Zhao, Z., Cui, Y., Li, Y., Li, X. F., Li, J., Zhang, N. N., Yang, X., Chen, S., Guo, Y., Zhao, G., Wang, X., Luo, D. Y., Wang, H., Yang, X., Li, Y., Han, G., He, Y., Zhou, X., Geng, S., Sheng, X., Jiang, S., Sun, S., Qin, C.F., Zhou, Y., 2020. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science, 369: 1603-1607.

    8. Hammer, A. S., Quaade, M. L., Rasmussen, T. B., Fonager, J., Rasmussen, M., Mundbjerg, K., Lohse, L., Strandbygaard, B., Joergensen, C. S., Alfaro-Nunez, A., Rosenstierne, M. W., Boklund, A., Halasa, T., Fomsgaard, A., Belsham, G. J., Boetner, A., 2021. SARS-CoV-2 Transmission between mink (Neovison vison) and humans, Denmark. Emerg Infect Dis, 27: 547-551.

    9. Han, P., Su, C., Zhang, Y., Bai, C., Zheng, A., Qiao, C., Wang, Q., Niu, S., Chen, Q., Zhang, Y., Li, W., Liao, H., Li, J., Zhang, Z., Cho, H., Yang, M., Rong, X., Hu, Y., Huang, N., Yan, J., Wang, Q., Zhao, X., Gao, G.F., Qi, J., 2021. Molecular insights into receptor binding of recent emerging SARS-CoV-2 variants. Nat Commun, 12: 6103.

    10. Han, P., Meng, Y., Zhang, D., Xu, Z., Li, Z., Pan, X., Zhao, Z., Li, L., Tang, L., Qi, J., Liu, K., Gao, G. F., 2023. Structural basis of white-tailed deer, Odocoileus virginianus, ACE2 recognizing all the SARS-CoV-2 variants of concern with high affinity. J Virol, 97: e0050523.

    11. Hu, Y., Liu, K., Han, P., Xu, Z., Zheng, A., Pan, X., Jia, Y., Su, C., Tang, L., Wu, L., Bai, B., Zhao, X., Tian, D., Chen, Z., Qi, J., Wang, Q., Gao, G. F., 2023. Host range and structural analysis of bat-origin RshSTT182/200 coronavirus binding to human ACE2 and its animal orthologs. EMBO J, 42: e111737.

    12. Kane, Y., Wong, G., Gao, G. F., 2023. Animal models, zoonotic reservoirs, and cross-species transmission of emerging human-infecting coronaviruses. Annu Rev Anim Biosci, 11: 1-31.

    13. Li, L., Han, P., Huang, B., Xie, Y., Li, W., Zhang, D., Han, P., Xu, Z., Bai, B., Zhou, J., Kang, X., Li, X., Zheng, A., Zhang, R., Qiao, S., Zhao, X., Qi, J., Wang, Q., Liu, K., Gao, G. F., 2022. Broader-species receptor binding and structural bases of Omicron SARS-CoV-2 to both mouse and palm-civet ACE2s. Cell Discov, 8: 65.

    14. Li, W., Xu, Z., Niu, T., Xie, Y., Zhao, Z., Li, D., He, Q., Sun, W., Shi, K., Guo, W., Chang, Z., Liu, K., Fan, Z., Qi, J., Gao, G. F., 2024. Key mechanistic features of the trade-off between antibody escape and host cell binding in the SARS-CoV-2 Omicron variant spike proteins. EMBO J, 43:1484-1498.

    15. Liu, K., Pan, X., Li, L., Yu, F., Zheng, A., Du, P., Han, P., Meng, Y., Zhang, Y., Wu, L., Chen, Q., Song, C., Jia, Y., Niu, S., Lu, D., Qiao, C., Chen, Z., Ma, D., Ma, X., Tan, S., Zhao, X., Qi, J., Gao, G.F., Wang, Q., 2021. Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell, 184: 3438-3451.e10.

    16. Liu, Y., Hu, G., Wang, Y., Ren, W., Zhao, X., Ji, F., Zhu, Y., Feng, F., Gong, M., Ju, X., Zhu, Y., Cai, X., Lan, J., Guo, J., Xie, M., Dong, L., Zhu, Z., Na, J., Wu, J., Lan, X., Xie, Y., Wang, X., Yuan, Z., Zhang, R., Ding, Q., 2021. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Proc Natl Acad Sci U S A, 118: e2025373118.

    17. Niu, S., Wang, J., Bai, B., Wu, L., Zheng, A., Chen, Q., Du, P., Han, P., Zhang, Y., Jia, Y., Qiao, C., Qi, J., Tian, W. X., Wang, H. W., Wang, Q., Gao, G. F., 2022. Molecular basis of cross-species ACE2 interactions with SARS-CoV-2-like viruses of pangolin origin. EMBO J, 41: e109962.

    18. Peng, R., Wu, L. A., Wang, Q., Qi, J., Gao, G. F., 2021. Cell entry by SARS-CoV-2. Trends Biochem Sci, 46: 848-860.

    19. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., Ferrin, T. E., 2004. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem, 25: 1605-1612.

    20. Pickering, B., Lung, O., Maguire, F., Kruczkiewicz, P., Kotwa, J. D., Buchanan, T., Gagnier, M., Guthrie, J. L., Jardine, C. M., Marchand-Austin, A., Masse, A., McClinchey, H., Nirmalarajah, K., Aftanas, P., Blais-Savoie, J., Chee, H. Y., Chien, E., Yim, W., Banete, A., Griffin, B. D., Yip, L., Goolia, M., Suderman, M., Pinette, M., Smith, G., Sullivan, D., Rudar, J., Vernygora, O., Adey, E., Nebroski, M., Goyette, G., Finzi, A., Laroche, G., Ariana, A., Vahkal, B., Cote, M., McGeer, A.J., Nituch, L., Mubareka, S., Bowman, J., 2022. Divergent SARS-CoV-2 variant emerges in white-tailed deer with deer-to-human transmission. Nat Microbiol, 7: 2011-2024.

    21. Porter, S. M., Hartwig, A. E., Bielefeldt-Ohmann, H., Bosco-Lauth, A. M., Root, J. J., 2022. Susceptibility of wild canids to SARS-CoV-2. Emerg Infect Dis, 28: 1852-1855.

    22. Punjani, A., Rubinstein, J. L., Fleet, D. J., Brubaker, M. A., 2017. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods, 14: 290-296.

    23. Rao, X., Zhao, R., Tong, Z., Guo, S., Peng, W., Liu, K., Li, S., Wu, L., Tong, J., Chai, Y., Han, P., Wang, F., Jia, P., Li, Z., Zhao, X., Li, D., Zhang, R., Zhang, X., Zou, W., Li, W., Wang, Q., Gao, G.F., Wu, Y., Dai, L., Gao, F., 2023. Defining a de novo non-RBM antibody as RBD-8 and its synergistic rescue of immune-evaded antibodies to neutralize Omicron SARS-CoV-2. Proc Natl Acad Sci U S A, 120: e2314193120.

    24. Tang, L., Zhang, D., Han, P., Kang, X., Zheng, A., Xu, Z., Zhao, X., Wang, V. Y., Qi, J., Wang, Q., Liu, K., Gao, G. F., 2022. Structural basis of SARS-CoV-2 and its variants binding to intermediate horseshoe bat ACE2. Int J Biol Sci, 18: 4658-4668.

    25. Wang, M., Jing, H. Q., Xu, H. F., Jiang, X. G., Kan, B., Liu, Q. Y., Wan, K. L., Cui, B. Y., Zheng, H., Cui, Z. G., Yan, M. Y., Liang, W. L., Wang, H. X., Qi, X. B., Li, Z. J., Li, M. C., Chen, K., Zhang, E. M., Zhang, S. Y., Hai, R., Yu, D.Z., Xu, J. G., 2005. Surveillance on severe acute respiratory syndrome associated coronavirus in animals at a live animal market of Guangzhou in 2004. Zhonghua Liu Xing Bing Xue Za Zhi, 26: 84-87. (In Chinese).

    26. Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J., Qi, J., 2020. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181: 894-904.e9.

    27. Wang, K., Pan, Y., Wang, D., Yuan, Y., Li, M., Chen, Y., Bi, L., Zhang, X. E., 2023. Altered hACE2 binding affinity and S1/S2 cleavage efficiency of SARS-CoV-2 spike protein mutants affect viral cell entry. Virol Sin, 38: 595-605.

    28. World Organization for Animal Health (OIE) (WOAH), 2023. SARS-COV-2 in animals-Situation report 22. https://www.woah.org/en/document/sars-cov-2-in-animals-situation-report-22/ (Accessed 30 June 2023).

    29. Wu, L., Chen, Q., Liu, K., Wang, J., Han, P., Zhang, Y., Hu, Y., Meng, Y., Pan, X., Qiao, C., Tian, S., Du, P., Song, H., Shi, W., Qi, J., Wang, H. W., Yan, J., Gao, G. F., Wang, Q., 2020. Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell Discov, 6: 68.

    30. Xu, Z., Kang, X., Han, P., Du, P., Li, L., Zheng, A., Deng, C., Qi, J., Zhao, X., Wang, Q., Liu, K., Gao, G. F., 2022a. Binding and structural basis of equine ACE2 to RBDs from SARS-CoV, SARS-CoV-2 and related coronaviruses. Nat Commun, 13: 3547.

    31. Xu, Z., Liu, K., Gao, G. F., 2022b. Omicron variant of SARS-CoV-2 imposes a new challenge for the global public health. Biosaf Health, 4: 147-149.

    32. Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., Zhou, Q., 2020. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, N.Y.), 367: 1444-1448.

    33. Zhang, Z., Zhang, Y., Liu, K., Li, Y., Lu, Q., Wang, Q., Zhang, Y., Wang, L., Liao, H., Zheng, A., Ma, S., Fan, Z., Li, H., Huang, W., Bi, Y., Zhao, X., Wang, Q., Gao, G. F., Xiao, H., Tong, Z., Qi, J., Sun, Y., 2021. The molecular basis for SARS-CoV-2 binding to dog ACE2. Nat Commun, 12: 4195.

    34. Zhao, X., Zheng, A., Li, D., Zhang, R., Sun, H., Wang, Q., Gao, G. F., Han, P., Dai, L., 2021. Neutralisation of ZF2001-elicited antisera to SARS-CoV-2 variants. Lancet Microbe, 2: e494.

    35. Zhao, Z., Xie, Y., Bai, B., Luo, C., Zhou, J., Li, W., Meng, Y., Li, L., Li, D., Li, X., Li, X., Wang, X., Sun, J., Xu, Z., Sun, Y., Zhang, W., Fan, Z., Zhao, X., Wu, L., Ma, J., Li, O.Y., Shang, G., Chai, Y., Liu, K., Wang, P., Gao, G.F., Qi, J., 2023. Structural basis for receptor binding and broader interspecies receptor recognition of currently circulating Omicron sub-variants. Nat Commun, 14: 4405.

    36. Zheng, S. Q., Palovcak, E., Armache, J. P., Verba, K. A., Cheng, Y., Agard, D. A., 2017. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods, 14: 331-332.

    37. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., Tan, W., China Novel Coronavirus Investigating and Research Team, 2020. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med, 382: 727-733.

  • 加载中
  • 10.1016j.virs.2024.06.004-ESM.docx

Figures(1)

Article Metrics

Article views(1065) PDF downloads(2) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    The binding and structural basis of fox ACE2 to RBDs from different sarbecoviruses

      Corresponding author: Kefang Liu, liukf@im.ac.cn
      Corresponding author: Ying Wu, yingwu@whu.edu.cn
    • a. State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China;
    • b. CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China;
    • c. Beijing Life Science Academy, Beijing, 102209, China;
    • d. Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China

    Abstract: Foxes are susceptible to SARS-CoV-2 in laboratory settings, and there have also been reports of natural infections of both SARS-CoV and SARS-CoV-2 in foxes. In this study, we assessed the binding capacities of fox ACE2 to important sarbecoviruses, including SARS-CoV, SARS-CoV-2, and animal-origin SARS-CoV-2 related viruses. Our findings demonstrated that fox ACE2 exhibits broad binding capabilities to receptor-binding domains (RBDs) of sarbecoviruses. We further determined the cryo-EM structures of fox ACE2 complexed with RBDs of SARS-CoV, SARS-CoV-2 prototype (PT), and Omicron BF.7. Through structural analysis, we identified that the K417 mutation can weaken the ability of SARS-CoV-2 sub-variants to bind to fox ACE2, thereby reducing the susceptibility of foxes to SARS-CoV-2 sub-variants. In addition, the Y498 residue in the SARS-CoV RBD plays a crucial role in forming a vital cation-π interaction with K353 in the fox ACE2 receptor. This interaction is the primary determinant for the higher affinity of the SARS-CoV RBD compared to that of the SARS-CoV-2 PT RBD. These results indicate that foxes serve as potential hosts for numerous sarbecoviruses, highlighting the critical importance of surveillance efforts.

    Figure (1)  Reference (37) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return