Jikai Deng, Feiyu Gong, Yingjian Li, Xue Tan, Xuemei Liu, Shimin Yang, Xianying Chen, Hongyun Wang, Qianyun Liu, Chao Shen, Li Zhou and Yu Chen. Structural and functional insights into the 2'-O-methyltransferase of SARS-CoV-2[J]. Virologica Sinica, 2024, 39(4): 619-631. doi: 10.1016/j.virs.2024.07.001
Citation: Jikai Deng, Feiyu Gong, Yingjian Li, Xue Tan, Xuemei Liu, Shimin Yang, Xianying Chen, Hongyun Wang, Qianyun Liu, Chao Shen, Li Zhou, Yu Chen. Structural and functional insights into the 2'-O-methyltransferase of SARS-CoV-2 .VIROLOGICA SINICA, 2024, 39(4) : 619-631.  http://dx.doi.org/10.1016/j.virs.2024.07.001

SARS-CoV-2 2'-O-甲基转移酶的结构和功能洞察

cstr: 32224.14.j.virs.2024.07.001
  • 通讯作者: 陈宇, chenyu@whu.edu.cn
  • 收稿日期: 2023-11-24
    录用日期: 2024-07-02
  • 冠状病毒的一个独特特性是它们利用自身编码的非结构性蛋白16(nsp16),即2'-O-甲基转移酶(2'-O-MTase),通过核糖2'-O-甲基化修饰对其RNA进行加帽反应。这一过程对于维护病毒基因组稳定性、促进有效的翻译以及实现免疫逃逸至关重要。尽管对SARS-CoV-2 nsp16/nsp10的超微结构已有相当进展,但对其分子机制的了解目前还很有限。在本研究中,我们系统性地研究了SARS-CoV-2中nsp16的2'-O-MTase活性,重点关注其对于nsp10刺激的依赖性。我们观察到由于保守的相互作用界面,nsp16与nsp10在不同的冠状病毒之间存在交叉反应性。然而,在SARS-CoV-2 nsp10中的单个残基替换(K58T)限制了MERS-CoV nsp16的功能激活。进一步地,辅因子nsp10有效地增强了nsp16与底物RNA以及甲基供体S-腺苷基-L-甲硫氨酸(SAM)的结合。从机制上讲,nsp10的His-80、Lys-93和Gly-94分别与nsp16的Asp-102、Ser-105和Asp-106相互作用,进而稳定了SAM结合口袋。nsp10的Lys-43与nsp16的Lys-38和Gly-39相互作用,动态调节RNA结合口袋,并促进RNA精确绑定到nsp16/nsp10复合物中。通过评估nsp16/nsp10复合物的构象表位,我们进一步确定了参与2'-O-MTase活性的关键残基。此外,我们利用体外生化平台筛选了针对2'-O-MTase活性的潜在抑制剂。总体来说,我们的结果显著增强了对病毒2'-O甲基化过程和机制的理解,为抗病毒药物开发提供了有价值的靶点。

Structural and functional insights into the 2'-O-methyltransferase of SARS-CoV-2

  • Corresponding author: Yu Chen, chenyu@whu.edu.cn
  • Received Date: 24 November 2023
    Accepted Date: 02 July 2024
  • A unique feature of coronaviruses is their utilization of self-encoded nonstructural protein 16 (nsp16), 2'-O-methyltransferase (2'-O-MTase), to cap their RNAs through ribose 2'-O-methylation modification. This process is crucial for maintaining viral genome stability, facilitating efficient translation, and enabling immune escape. Despite considerable advances in the ultrastructure of SARS-CoV-2 nsp16/nsp10, insights into its molecular mechanism have so far been limited. In this study, we systematically characterized the 2'-O-MTase activity of nsp16 in SARS-CoV-2, focusing on its dependence on nsp10 stimulation. We observed cross-reactivity between nsp16 and nsp10 in various coronaviruses due to a conserved interaction interface. However, a single residue substitution (K58T) in SARS-CoV-2 nsp10 restricted the functional activation of MERS-CoV nsp16. Furthermore, the cofactor nsp10 effectively enhanced the binding of nsp16 to the substrate RNA and the methyl donor S-adenosyl-l-methionine (SAM). Mechanistically, His-80, Lys-93, and Gly-94 of nsp10 interacted with Asp-102, Ser-105, and Asp-106 of nsp16, respectively, thereby effectively stabilizing the SAM binding pocket. Lys-43 of nsp10 interacted with Lys-38 and Gly-39 of nsp16 to dynamically regulate the RNA binding pocket and facilitate precise binding of RNA to the nsp16/nsp10 complex. By assessing the conformational epitopes of nsp16/nsp10 complex, we further determined the critical residues involved in 2'-O-MTase activity. Additionally, we utilized an in vitro biochemical platform to screen potential inhibitors targeting 2'-O-MTase activity. Overall, our results significantly enhance the understanding of viral 2'-O methylation process and mechanism, providing valuable targets for antiviral drug development.

  • 加载中
    1. ahola, T., Laakkonen, P., Vihinen, H., Kaariainen, L. 1997. Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. J Virol, 71, 392-397.

    2. Aouadi, W., Blanjoie, A., Vasseur, J. J., Debart, F., Canard, B., Decroly, E. 2017. Binding of the Methyl Donor S-Adenosyl-l-Methionine to Middle East Respiratory Syndrome Coronavirus 2'-O-Methyltransferase nsp16 Promotes Recruitment of the Allosteric Activator nsp10. J Virol, 91, e02217-16.

    3. Bouvet, M., Debarnot, C., Imbert, I., Selisko, B., Snijder, E. J., Canard, B., Decroly, E. 2010. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog, 6, e1000863.

    4. Brecher, M. B., Li, Z., Zhang, J., Chen, H., Lin, Q., Liu, B., Li, H. 2015. Refolding of a fully functional flavivirus methyltransferase revealed that S-adenosyl methionine but not S-adenosyl homocysteine is copurified with flavivirus methyltransferase. Protein Sci, 24, 117-128.

    5. Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T., Guo, D. 2009. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci U S A, 106, 3484-3489.

    6. Chen, Y., Guo, D. 2016. Molecular mechanisms of coronavirus RNA capping and methylation. Virol Sin, 31, 3-11.

    7. Chen, Y., Liu, Q., Guo, D. 2020. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol, 92, 418-423.

    8. Chen, Y., Liu, Q., Zhou, L., Zhou, Y., Yan, H., Lan, K. 2022. Emerging SARS-CoV-2 variants: Why, how, and what's next? Cell Insight, 1, 100029.

    9. Chen, Y., Su, C., Ke, M., Jin, X., Xu, L., Zhang, Z., Wu, A., Sun, Y., Yang, Z., Tien, P., Ahola, T., Liang, Y., Liu, X., Guo, D. 2011. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2'-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog, 7, e1002294.

    10. Chrebet, G. L., Wisniewski, D., Perkins, A. L., Deng, Q., Kurtz, M. B., Marcy, A., Parent, S. A. 2005. Cell-based assays to detect inhibitors of fungal mRNA capping enzymes and characterization of sinefungin as a cap methyltransferase inhibitor. J Biomol Screen, 10, 355-364.

    11. Daffis, S., Szretter, K. J., Schriewer, J., Li, J., Youn, S., Errett, J., Lin, T. Y., Schneller, S., Zust, R., Dong, H., Thiel, V., Sen, G. C., Fensterl, V., Klimstra, W. B., Pierson, T. C., Buller, R. M., Gale, M., Jr., Shi, P. Y., Diamond, M. S. 2010. 2'-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 468, 452-456.

    12. Decroly, E., Debarnot, C., Ferron, F., Bouvet, M., Coutard, B., Imbert, I., Gluais, L., Papageorgiou, N., Sharff, A., Bricogne, G., Ortiz-Lombardia, M., Lescar, J., Canard, B. 2011a. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2'-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog, 7, e1002059.

    13. Decroly, E., Ferron, F., Lescar, J., Canard, B. 2011b. Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol, 10, 51-65.

    14. DECROLY, E., IMBERT, I., COUTARD, B., BOUVET, M., SELISKO, B., ALVAREZ, K., GORBALENYA, A. E., SNIJDER, E. J. & CANARD, B. 2008a. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2'O)-methyltransferase activity. J Virol, 82, 8071-8084.

    15. Decroly, E., Imbert, I., Coutard, B., Bouvet, M. L., Selisko, B., Alvarez, K., Gorbalenya, A. E., Snijder, E. J., Canard, B. 2008b. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2'O)-methyltransferase activity. Journal of Virology, 82, 8071-8084.

    16. Deng, J., Yang, S., Li, Y., Tan, X., Liu, J., Yu, Y., Ding, Q., Fan, C., Wang, H., Chen, X., Liu, Q., Guo, X., Gong, F., Zhou, L., Chen, Y. 2024. Natural evidence of coronaviral 2'-O-methyltransferase activity affecting viral pathogenesis via improved substrate RNA binding. Signal Transduct Target Ther, 9, 140.

    17. Dong, H., Zhang, B., Shi, P. Y. 2008. Flavivirus methyltransferase: a novel antiviral target. Antiviral Res, 80, 1-10.

    18. Encinar, J. A., Menendez, J. A. 2020. Potential Drugs Targeting Early Innate Immune Evasion of SARS-Coronavirus 2 via 2'-O-Methylation of Viral RNA. Viruses, 12, 525.

    19. Ferron, F., Decroly, E., Selisko, B., Canard, B. 2012. The viral RNA capping machinery as a target for antiviral drugs. Antiviral Res, 96, 21-31.

    20. Hager, J., Staker, B. L., Bugl, H., Jakob, U. 2002. Active site in RrmJ, a heat shock-induced methyltransferase. J Biol Chem, 277, 41978-41986.

    21. Hodel, A. E., Gershon, P. D., Quiocho, F. A. 1998. Structural basis for sequence-nonspecific recognition of 5'-capped mRNA by a cap-modifying enzyme. Mol Cell, 1, 443-447.

    22. Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K. K., Schlee, M., Endres, S., Hartmann, G. 2006. 5'-Triphosphate RNA is the ligand for RIG-I. Science, 314, 994-997.

    23. Huang, Y., Xie, J., Guo, Y., Sun, W., He, Y., Liu, K., Yan, J., Tao, A., Zhong, N. 2021. SARS-CoV-2: Origin, Intermediate Host and Allergenicity Features and Hypotheses. Healthcare (Basel), 9, 1132.

    24. Ivanov, K. A., Ziebuhr, J. 2004. Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5'-triphosphatase activities. J Virol, 78, 7833-7838.

    25. Jeffery, D. R., Roth, J. A. 1987. Kinetic Reaction-Mechanism for Magnesium Binding To Membrane-Bound and Soluble Catechol O-Methyltransferase. Biochemistry, 26, 2955-2958.

    26. Joseph, J. S., Saikatendu, K. S., Subramanian, V., Neuman, B. W., Brooun, A., Griffith, M., Moy, K., Yadav, M. K., Velasquez, J., Buchmeier, M. J., Stevens, R. C., Kuhn, P. 2006. Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs. J Virol, 80, 7894-7901.

    27. Ke, M., Chen, Y., Wu, A., Sun, Y., Su, C., Wu, H., Jin, X., Tao, J., Wang, Y., Ma, X., Pan, J. A., Guo, D. 2012. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2'-O-methyltransferase activity of nsp10/nsp16 complex. Virus Res, 167, 322-328.

    28. Krafcikova, P., Silhan, J., Nencka, R., Boura, E. 2020. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat Commun, 11, 3717.

    29. Krishna, S. S., Majumdar, I., Grishin, N. V. 2003. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res, 31, 532-550.

    30. Lin, S., Chen, H., Ye, F., Chen, Z., Yang, F., Zheng, Y., Cao, Y., Qiao, J., Yang, S., Lu, G. 2020. Crystal structure of SARS-CoV-2 nsp10/nsp16 2'-O-methylase and its implication on antiviral drug design. Signal Transduct Target Ther, 5, 131.

    31. Liu, H., Kiledjian, M. 2006. Decapping the message: a beginning or an end. Biochem Soc Trans, 34, 35-38.

    32. Lugari, A., Betzi, S., Decroly, E., Bonnaud, E., Hermant, A., Guillemot, J. C., Debarnot, C., Borg, J. P., Bouvet, M., Canard, B., Morelli, X., Lecine, P. 2010. Molecular mapping of the RNA Cap 2'-O-methyltransferase activation interface between severe acute respiratory syndrome coronavirus nsp10 and nsp16. J Biol Chem, 285, 33230-33241.

    33. Mahalapbutr, P., Kongtaworn, N., Rungrotmongkol, T. 2020. Structural insight into the recognition of S-adenosyl-L-homocysteine and sinefungin in SARS-CoV-2 Nsp16/Nsp10 RNA cap 2'-O-Methyltransferase. Comput Struct Biotechnol J, 18, 2757-2765.

    34. Martin, J.L., Mcmillan, F.M. 2002. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol, 12, 783-793.

    35. Maurya, S. K., Maurya, A. K., Mishra, N., Siddique, H. R. 2020. Virtual screening, ADME/T, and binding free energy analysis of anti-viral, anti-protease, and anti-infectious compounds against NSP10/NSP16 methyltransferase and main protease of SARS CoV-2. J Recept Signal Transduct Res, 40, 605-612.

    36. Nallagatla, S. R., Toroney, R., Bevilacqua, P. C. 2008. A brilliant disguise for self RNA: 5'-end and internal modifications of primary transcripts suppress elements of innate immunity. RNA Biol, 5, 140-144.

    37. Park, G. J., Osinski, A., Hernandez, G., Eitson, J. L., Majumdar, A., Tonelli, M., Henzler-Wildman, K., Pawlowski, K., Chen, Z., Li, Y., Schoggins, J. W., Tagliabracci, V. S. 2022. The mechanism of RNA capping by SARS-CoV-2. Nature, 609, 793-800.

    38. Pierce, B. G., Wiehe, K., Hwang, H., Kim, B. H., Vreven, T., Weng, Z. 2014. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 30, 1771-1773.

    39. Pradhan, M., Esteve, P. O., Chin, H. G., Samaranayke, M., Kim, G. D., Pradhan, S. 2008. CXXC domain of human DNMT1 is essential for enzymatic activity. Biochemistry, 47, 10000-10009.

    40. Pugh, C. S., Borchardt, R. T. 1982. Effects of S-adenosylhomocysteine analogues on vaccinia viral messenger ribonucleic acid synthesis and methylation. Biochemistry, 21, 1535-1541.

    41. Ray, D., Shah, A., Tilgner, M., Guo, Y., Zhao, Y., Dong, H., Deas, T. S., Zhou, Y., Li, H., Shi, P. Y. 2006. West Nile virus 5'-cap structure is formed by sequential guanine N-7 and ribose 2'-O methylations by nonstructural protein 5. J Virol, 80, 8362-8370.

    42. Rehwinkel, J., Tan, C. P., Goubau, D., Schulz, O., Pichlmair, A., Bier, K., Robb, N., Vreede, F., Barclay, W., Fodor, E., Reis E Sousa, C. 2010. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell, 140, 397-408.

    43. Robert, X., Gouet, P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res, 42, W320-W324.

    44. Rogstam, A., Nyblom, M., Christensen, S., Sele, C., Talibov, V. O., Lindvall, T., Rasmussen, A. A., Andre, I., Fisher, Z., Knecht, W., Kozielski, F. 2020. Crystal Structure of Non-Structural Protein 10 from Severe Acute Respiratory Syndrome Coronavirus-2. Int J Mol Sci, 21, 7375.

    45. Rosas-Lemus, M., Minasov, G., Shuvalova, L., Inniss, N. L., Kiryukhina, O., Brunzelle, J., Satchell, K. J. F. 2020. High-resolution structures of the SARS-CoV-2 2'-O-methyltransferase reveal strategies for structure-based inhibitor design. Sci Signal, 13, eabe1202.

    46. Russ, A., Wittmann, S., Tsukamoto, Y., Herrmann, A., Deutschmann, J., Lagisquet, J., Ensser, A., Kato, H., Gramberg, T. 2022. Nsp16 shields SARS-CoV-2 from efficient MDA5 sensing and IFIT1-mediated restriction. EMBO Rep, 23, e55648.

    47. Schindewolf, C., Lokugamage, K., Vu, M. N., Johnson, B. A., Scharton, D., Plante, J. A., Kalveram, B., Crocquet-Valdes, P. A., Sotcheff, S., Jaworski, E., Alvarado, R. E., Debbink, K., Daugherty, M. D., Weaver, S. C., Routh, A. L., Walker, D. H., Plante, K. S., Menachery, V. D. 2023. SARS-CoV-2 Uses Nonstructural Protein 16 To Evade Restriction by IFIT1 and IFIT3. J Virol, 97, e0153222.

    48. Schwer, B., Lehman, K., Saha, N., Shuman, S. 2001. Characterization of the mRNA capping apparatus of Candida albicans. J Biol Chem, 276, 1857-1864.

    49. Selisko, B., Peyrane, F. F., Canard, B., Alvarez, K., Decroly, E. 2010. Biochemical characterization of the (nucleoside-2'O)-methyltransferase activity of dengue virus protein NS5 using purified capped RNA oligonucleotides (7Me)GpppAC(n) and GpppAC(n). J Gen Virol, 91, 112-121.

    50. Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., Zhao, Y., Liu, P., Liang, L., Cui, P., Wang, J., Zhang, X., Guan, Y., Tan, W., Wu, G., Chen, H., Bu, Z. 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science, 368, 1016-1020.

    51. Shikauchi, Y., Saiura, A., Kubo, T., Niwa, Y., Yamamoto, J., Murase, Y., Yoshikawa, H. 2009. SALL3 interacts with DNMT3A and shows the ability to inhibit CpG island methylation in hepatocellular carcinoma. Mol Cell Biol, 29, 1944-1958.

    52. Smith, E. C., Case, J. B., Blanc, H., Isakov, O., Shomron, N., Vignuzzi, M., Denison, M. R. 2015. Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity. J Virol, 89, 6418-6426.

    53. Tazikeh-Lemeski, E., Moradi, S., Raoufi, R., Shahlaei, M., Janlou, M. A. M., Zolghadri, S. 2020. Targeting SARS-COV-2 non-structural protein 16: a virtual drug repurposing study. J Biomol Struct Dyn, 39, 4633-4646.

    54. Viswanathan, T., Arya, S., Chan, S. H., Qi, S., Dai, N., Misra, A., Park, J. G., Oladunni, F., Kovalskyy, D., Hromas, R. A., Martinez-Sobrido, L., Gupta, Y. K. 2020. Structural basis of RNA cap modification by SARS-CoV-2. Nat Commun, 11, 3718.

    55. Wang, D., Jiang, A., Feng, J., Li, G., Guo, D., Sajid, M., Wu, K., Zhang, Q., Ponty, Y., Will, S., Liu, F., Yu, X., Li, S., Liu, Q., Yang, X. L., Guo, M., Li, X., Chen, M., Shi, Z. L., Lan, K., Chen, Y., Zhou, Y. 2021. The SARS-CoV-2 subgenome landscape and its novel regulatory features. Mol Cell, 81, 2135-2147.e5.

    56. Wang, Y., Sun, Y., Wu, A., Xu, S., Pan, R., Zeng, C., Jin, X., Ge, X., Shi, Z., Ahola, T., Chen, Y., Guo, D. 2015. Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis. J Virol, 89, 8416-8427.

    57. Wilamowski, M., Sherrell, D. A., Minasov, G., Kim, Y., Shuvalova, L., Lavens, A., Chard, R., Maltseva, N., Jedrzejczak, R., Rosas-Lemus, M., Saint, N., Foster, I. T., Michalska, K., Satchell, K. J. F., Joachimiak, A. 2021. 2'-O methylation of RNA cap in SARS-CoV-2 captured by serial crystallography. Proc Natl Acad Sci U S A, 118, e2100170118.

    58. Woyciniuk, P., Linder, M., Scholtissek, C. 1995. The methyltransferase inhibitor Neplanocin A interferes with influenza virus replication by a mechanism different from that of 3-deazaadenosine. Virus Res, 35, 91-99.

    59. Yan, L., Ge, J., Zheng, L., Zhang, Y., Gao, Y., Wang, T., Huang, Y., Yang, Y., Gao, S., Li, M., Liu, Z., Wang, H., Li, Y., Chen, Y., Guddat, L. W., Wang, Q., Rao, Z., Lou, Z. 2021a. Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis. Cell, 184, 184-193. e10.

    60. Yan, L., Yang, Y., Li, M., Zhang, Y., Zheng, L., Ge, J., Huang, Y. C., Liu, Z., Wang, T., Gao, S., Zhang, R., Huang, Y. Y., Guddat, L. W., Gao, Y., Rao, Z., Lou, Z. 2021b. Coupling of N7-methyltransferase and 3'-5' exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell, 184, 3474-3485. e11.

    61. Ye, Z. W., Ong, C. P., Tang, K., Fan, Y., Luo, C., Zhou, R., Luo, P., Cheng, Y., Gray, V. S., Wang, P., Chu, H., Chan, J. F., To, K. K., Chen, H., Chen, Z., Yuen, K. Y., Ling, G. S., Yuan, S., Jin, D. Y. 2022. Intranasal administration of a single dose of a candidate live attenuated vaccine derived from an NSP16-deficient SARS-CoV-2 strain confers sterilizing immunity in animals. Cell Mol Immunol, 19, 588-601.

    62. Zeng, C., Wu, A., Wang, Y., Xu, S., Tang, Y., Jin, X., Wang, S., Qin, L., Sun, Y., Fan, C., Snijder, E. J., Neuman, B. W., Chen, Y., Ahola, T., Guo, D. 2016. Identification and Characterization of a Ribose 2'-O-Methyltransferase Encoded by the Ronivirus Branch of Nidovirales. J Virol, 90, 6675-6685.

    63. Zhou, Y., Ray, D., Zhao, Y., Dong, H., Ren, S., Li, Z., Guo, Y., Bernard, K. A., Shi, P. Y., Li, H. 2007. Structure and function of flavivirus NS5 methyltransferase. J Virol, 81, 3891-3903.

    64. Ziebuhr, J. 2005. The coronavirus replicase. Curr Top Microbiol Immunol, 287, 57-94.

    65. Zust, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B. W., Ziebuhr, J., Szretter, K. J., Baker, S. C., Barchet, W., Diamond, M. S., Siddell, S. G., Ludewig, B., Thiel, V. 2011. Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol, 12, 137-143.

  • 加载中
  • 10.1016j.virs.2024.07.001-ESM.docx

Figures(2)

Article Metrics

Article views(1062) PDF downloads(2) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Structural and functional insights into the 2'-O-methyltransferase of SARS-CoV-2

      Corresponding author: Yu Chen, chenyu@whu.edu.cn
    • a. State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China;
    • b. Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, 430071, China

    Abstract: A unique feature of coronaviruses is their utilization of self-encoded nonstructural protein 16 (nsp16), 2'-O-methyltransferase (2'-O-MTase), to cap their RNAs through ribose 2'-O-methylation modification. This process is crucial for maintaining viral genome stability, facilitating efficient translation, and enabling immune escape. Despite considerable advances in the ultrastructure of SARS-CoV-2 nsp16/nsp10, insights into its molecular mechanism have so far been limited. In this study, we systematically characterized the 2'-O-MTase activity of nsp16 in SARS-CoV-2, focusing on its dependence on nsp10 stimulation. We observed cross-reactivity between nsp16 and nsp10 in various coronaviruses due to a conserved interaction interface. However, a single residue substitution (K58T) in SARS-CoV-2 nsp10 restricted the functional activation of MERS-CoV nsp16. Furthermore, the cofactor nsp10 effectively enhanced the binding of nsp16 to the substrate RNA and the methyl donor S-adenosyl-l-methionine (SAM). Mechanistically, His-80, Lys-93, and Gly-94 of nsp10 interacted with Asp-102, Ser-105, and Asp-106 of nsp16, respectively, thereby effectively stabilizing the SAM binding pocket. Lys-43 of nsp10 interacted with Lys-38 and Gly-39 of nsp16 to dynamically regulate the RNA binding pocket and facilitate precise binding of RNA to the nsp16/nsp10 complex. By assessing the conformational epitopes of nsp16/nsp10 complex, we further determined the critical residues involved in 2'-O-MTase activity. Additionally, we utilized an in vitro biochemical platform to screen potential inhibitors targeting 2'-O-MTase activity. Overall, our results significantly enhance the understanding of viral 2'-O methylation process and mechanism, providing valuable targets for antiviral drug development.

    Figure (2)  Reference (65) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return