Yihua Jiang, Lingjin Sun, Nan Qiao, Xiang Wang, Caihong Zhu, Man Xing, Hui Liu, Ping Zhou and Dongming Zhou. A quadrivalent norovirus vaccine based on a chimpanzee adenovirus vector induces potent immunity in mice[J]. Virologica Sinica, 2024, 39(4): 675-684. doi: 10.1016/j.virs.2024.07.002
Citation: Yihua Jiang, Lingjin Sun, Nan Qiao, Xiang Wang, Caihong Zhu, Man Xing, Hui Liu, Ping Zhou, Dongming Zhou. A quadrivalent norovirus vaccine based on a chimpanzee adenovirus vector induces potent immunity in mice .VIROLOGICA SINICA, 2024, 39(4) : 675-684.  http://dx.doi.org/10.1016/j.virs.2024.07.002

基于黑猩猩腺病毒载体的四价诺如病毒疫苗可诱导小鼠产生强效免疫力

cstr: 32224.14.j.virs.2024.07.002
  • 诺如病毒(NoV)感染是造成全球肠胃炎的主要病因。由于其基因和抗原的多样性,该病毒给开发具有广泛免疫保护作用的疫苗带来了巨大挑战。迄今为止,还没有获准用于临床的 NoV 疫苗。在此,我们以黑猩猩腺病毒 AdC68 为载体,开发了一种广谱的四价 NoV 疫苗,该载体携带诺如病毒 GI 和 GII 亚群的主要衣壳蛋白(VP1)。与肌肉注射(i.m.)、鼻内注射(i.n.)或其他初免-加强免疫方案(i.m. + i.m.、i.m. + i.n.、i.n. + i.m.)相比,AdC68-GI.1-GII.3 (E1)-GII.4-GII.17 (E3) 通过 i.n. + i.n.给药可诱导小鼠产生更高滴度的血清 IgG 抗体以及支气管肺泡灌洗液(BALF)和唾液中针对四种同源 VP1 的IgA 抗体,还能明显刺激产生针对四种基因型的阻断抗体。在病毒样颗粒(VLP)-GI.1、VLP-GII.3、VLP-GII.4 和 VLP-GII.17 的再次刺激下, i.n. + i.n. 策略接种的四价疫苗有效地引发了以 IFN-γ 分泌为主要特征的特异性T细胞免疫反应。此外,该新型四价 NoV 疫苗只需要制备一种重组腺病毒,就能针对主要的 GI/GII 流行株提供广泛的预防性免疫,因此是一种很有希望进一步开发的候选疫苗。

A quadrivalent norovirus vaccine based on a chimpanzee adenovirus vector induces potent immunity in mice

  • Norovirus (NoV) infection is a major cause of gastroenteritis worldwide. The virus poses great challenges in developing vaccines with broad immune protection due to its genetic and antigenic diversity. To date, there are no approved NoV vaccines for clinical use. Here, we aimed to develop a broad-acting quadrivalent NoV vaccine based on a chimpanzee adenovirus vector, AdC68, carrying the major capsid protein (VP1) of noroviral GI and GII genotypes. Compared to intramuscular (i.m.), intranasal (i.n.), or other prime-boost immunization regimens (i.m. + i.m., i.m. + i.n., i.n. + i.m.), AdC68-GI.1-GII.3 (E1)-GII.4-GII.17 (E3), administered via i.n. + i.n. induced higher titers of serum IgG antibodies and higher IgA antibodies in bronchoalveolar lavage fluid (BALF) and saliva against the four homologous VP1s in mice. It also significantly stimulated the production of blocking antibodies against the four genotypes. In response to re-stimulation with virus-like particles (VLP)-GI.1, VLP-GII.3, VLP-GII.4, and VLP-GII.17, the quadrivalent vaccine administered according to the i.n. + i.n. regimen effectively triggered specific cell-mediated immune responses, primarily characterized by IFN-γ secretion. Furthermore, the preparation of this novel quadrivalent NoV vaccine requires only a single recombinant adenovirus to provide broad preventive immunity against the major GI/GII epidemic strains, making it a promising vaccine candidate for further development.

  • 加载中
    1. Afkhami S, D'Agostino MR, Zhang A, Stacey HD, Marzok A, Kang A, Singh R, Bavananthasivam J, Ye G, Luo X, Wang F, Ang JC, Zganiacz A, Sankar U, Kazhdan N, Koenig JFE, Phelps A, Gameiro SF, Tang S, Jordana M, Wan Y, Mossman KL, Jeyanathan M, Gillgrass A, Medina MFC, Smaill F, Lichty BD, Miller MS, Xing Z. 2022. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell, 185: 896-915.e819.

    2. Atmar RL, Bernstein DI, Harro CD, Al-Ibrahim MS, Chen WH, Ferreira J, Estes MK, Graham DY, Opekun AR, Richardson C, Mendelman PM. 2011. Norovirus vaccine against experimental human norwalk virus illness. N. Engl. J. Med., 365: 2178-2187.

    3. Atmar RL, Bernstein DI, Lyon GM, Treanor JJ, Al-Ibrahim MS, Graham DY, Vinje J, Jiang X, Gregoricus N, Frenck RW, Moe CL, Chen WH, Ferreira J, Barrett J, Opekun AR, Estes MK, Borkowski A, Baehner F, Goodwin R, Edmonds A, Mendelman PM, Plotkin SA. 2015. Serological correlates of protection against a GII.4 norovirus. Clin. Vaccine Immunol., 22: 923-929.

    4. An, X., Martinez-Paniagua, M., Rezvan, A., Sefat, S. R., Fathi, M., Singh, S., Biswas, S., Pourpak, M., Yee, C., Liu, X., Varadarajan, N. 2021. Single-dose intranasal vaccination elicits systemic and mucosal immunity against SARS-CoV-2. iScience, 24: 103037.

    5. Bansal GP, Fang H, Tan M, Xia M, Wang L, Jiang X. 2013. Norovirus p particle efficiently elicits innate, humoral and cellular immunity. PLoS One, 8: e63269.

    6. Barman TK, Huber VC, Bonin JL, Califano D, Salmon SL, McKenzie ANJ, Metzger DW. 2022. Viral PB1-F2 and Host IFN-γ Guide ILC2 and T Cell Activity during Influenza Virus Infection. Proceedings of the National Academy of Sciences, vol. 119: e2118535119.

    7. Bernstein DI, Atmar RL, Lyon GM, Treanor JJ, Chen WH, Jiang X, Vinje J, Gregoricus N, Frenck RW, Jr., Moe CL, Al-Ibrahim MS, Barrett J, Ferreira J, Estes MK, Graham DY, Goodwin R, Borkowski A, Clemens R, Mendelman PM. 2015. Norovirus vaccine against experimental human gii.4 virus illness: a challenge study in healthy adults. J. Infect. Dis., 211: 870-878.

    8. Bonifait L, Charlebois R, Vimont A, Turgeon N, Veillette M, Longtin Y, Jean J, Duchaine C. 2015. Detection and quantification of airborne norovirus during outbreaks in healthcare facilities. Clin. Infect. Dis., 61: 299-304.

    9. Chan MC, Lee N, Hung TN, Kwok K, Cheung K, Tin EK, Lai RW, Nelson EA, Leung TF, Chan PK. 2015. Rapid emergence and predominance of a broadly recognizing and fast-evolving norovirus GII.17 variant in late 2014. Nat. Commun., 6: 10061.

    10. Chen J, Li Y, Lai F, Wang Y, Sutter K, Dittmer U, Ye J, Zai W, Liu M, Shen F, Wu M, Hu K, Li B, Lu M, Zhang X, Zhang J, Li J, Chen Q, Yuan Z. 2021. Functional comparison of interferon-α subtypes reveals potent hepatitis b virus suppression by a concerted action of interferon-α and interferon-γ signaling. Hepatology, 73: 486-502.

    11. Chhabra P, de Graaf M, Parra GI, Chan MC-W, Green K, Martella V, Wang Q, White PA, Katayama K, Vennema H, Koopmans MPG, Vinje J. 2019. Updated classification of norovirus genogroups and genotypes. J. Gen. Virol., 100: 1393-1406.

    12. de Graaf M, van Beek J, Koopmans MP. 2016. Human norovirus transmission and evolution in a changing world. Nat. Rev. Microbiol., 14: 421-433.

    13. Dutch RE, Ramani S, Estes MK, Atmar RL. 2016. Correlates of protection against norovirus infection and disease-where are we now, where do we go? PLoS Pathog., 12: e1005334.

    14. Guo J, Mondal M, Zhou D. 2018. Development of novel vaccine vectors: chimpanzee adenoviral vectors. Hum. Vaccines Immunother., 14: 1679-1685.

    15. Guo L, Wang J, Zhou H, Si H, Wang M, Song J, Han B, Shu Y, Ren L, Qu J, Hung T. 2008. Intranasal administration of a recombinant adenovirus expressing the norovirus capsid protein stimulates specific humoral, mucosal, and cellular immune responses in mice. Vaccine, 26: 460-468.

    16. Hartwell, B.L., Melo, M.B., Xiao, P., Lemnios, A.A., Li, N., Chang, J.Y.H., Yu, J., Gebre, M.S., Chang, A., Maiorino, L., Carter, C., Moyer, T.J., Dalvie, N.C., Rodriguez-Aponte, S.A., Rodrigues, K.A., Silva, M., Suh, H., Adams, J., Fontenot, J., Love, J.C., Barouch, D.H., Villinger, F., Ruprecht, R.M., Irvine, D.J., 2022. Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity. Sci Transl Med 14, eabn1413.

    17. Hou W, Lv L, Wang Y, Xing M, Guo Y, Xie D, Wei X, Zhang X, Liu H, Ren J, Zhou D. 2022. 6-valent virus-like particle-based vaccine induced potent and sustained immunity against noroviruses in mice. Front. Immunol., 13: 906275.

    18. Harkema J. R. 1990. Comparative pathology of the nasal mucosa in laboratory animals exposed to inhaled irritants. Environ. Health Perspect., 85: 231-238.

    19. Kendra JA, Tohma K, Parra GI. 2022. Global and regional circulation trends of norovirus genotypes and recombinants, 1995-2019: a comprehensive review of sequences from public databases. Rev. Med. Virol., 32: e2354.

    20. Kim L, Liebowitz D, Lin K, Kasparek K, Pasetti MF, Garg SJ, Gottlieb K, Trager G, Tucker SN. 2018. Safety and immunogenicity of an oral tablet norovirus vaccine, a phase I randomized, placebo-controlled trial. JCI Insight, 3: e121077.

    21. Leroux-Roels G, Cramer JP, Mendelman PM, Sherwood J, Clemens R, Aerssens A, De Coster I, Borkowski A, Baehner F, Van Damme P. 2018. Safety and immunogenicity of different formulations of norovirus vaccine candidate in healthy adults: a randomized, controlled, double-blind clinical trial. J. Infect. Dis., 217: 597-607.

    22. Leroux-Roels I, Maes C, Joye J, Jacobs B, Jarczowski F, Diessner A, Janssens Y, Waerlop G, Tamminen K, Heinimaki S, Blazevic V, Leroux-Roels G, Klimyuk V, Adachi H, Hiruta K, Thieme F. 2022. A randomized, double-blind, placebo-controlled, dose-escalating phase I trial to evaluate safety and immunogenicity of a plant-produced, bivalent, recombinant norovirus-like particle vaccine. Front. Immunol., 13: 1021500.

    23. Li J, Zhang L, Zou W, Yang Z, Zhan J, Cheng J. 2023. Epidemiology and genetic diversity of norovirus GII genogroups among children in Hubei, China, 2017-2019. Virol. Sin., 38: 351-362.

    24. Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, Stewart P, LePendu J, Baric R. 2003. Human susceptibility and resistance to Norwalk virus infection. Nat. Med., 9: 548-553.

    25. Liu J, Xu K, Xing M, Zhuo Y, Guo J, Du M, Wang Q, An Y, Li J, Gao P, Wang Y, He F, Guo Y, Li M, Zhang Y, Zhang L, Gao GF, Dai L, Zhou D. 2021. Heterologous prime-boost immunizations with chimpanzee adenoviral vectors elicit potent and protective immunity against SARS-CoV-2 infection. Cell Discovery, 7: 123.

    26. Liu W, Li H, Liu B, Lv T, Yang C, Chen S, Feng L, Lai L, Duan Z, Chen X, Li P, Guan S, Chen L. 2023. A new vaccination regimen using adenovirus-vectored vaccine confers effective protection against african swine fever virus in swine. Emerg. Microb. Infect., 12: 2233643.

    27. Ma, Y., Li, J., 2011. Vesicular stomatitis virus as a vector to deliver virus-like particles of human norovirus: a new vaccine candidate against an important noncultivable virus. J. Virol., 85: 2942-2952.

    28. Mao, T., Israelow, B., Peña-Hernández, M.A., Suberi, A., Zhou, L., Luyten, S., Reschke, M., Dong, H., Homer, R.J., Saltzman, W.M., Iwasaki, A., 2022. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 378, eabo2523.

    29. Marks PJ, Vipond IB, Carlisle D, Deakin D, Fey RE, Caul EO. 2000. Evidence for airborne transmission of Norwalk-Like Virus (NLV) in a hotel restaurant. Epidemic Infect, 124: 481-487.

    30. Mathew LG, Herbst-Kralovetz MM, Mason HS. 2014. Norovirus narita 104 virus-like particles expressed in nicotiana benthamiana induce serum and mucosal immune responses. BioMed Res. Int. 2014:2014:807539.

    31. Milligan ID, Gibani MM, Sewell R, Clutterbuck EA, Campbell D, Plested E, Nuthall E, Voysey M, Silva-Reyes L, McElrath MJ, De Rosa SC, Frahm N, Cohen KW, Shukarev G, Orzabal N, van Duijnhoven W, Truyers C, Bachmayer N, Splinter D, Samy N, Pau MG, Schuitemaker H, Luhn K, Callendret B, Van Hoof J, Douoguih M, Ewer K, Angus B, Pollard AJ, Snape MD. 2016. Safety and immunogenicity of novel adenovirus type 26- and modified vaccinia ankara-vectored Ebola vaccines: a randomized clinical trial. JAMA, 315: 1610-1623.

    32. Moore MD, Goulter RM, Jaykus L-A. 2015. Human norovirus as a foodborne pathogen: challenges and developments. Annu. Rev. Food Sci. Technol., 6: 411-433.

    33. Parys A, Vandoorn E, Chiers K, Passvogel K, Fuchs W, Mettenleiter TC, Van Reeth K. 2022. Exploring prime-boost vaccination regimens with different H1N1 swine influenza a virus strains and vaccine platforms. Vaccines, 10: 1826.

    34. Pattekar A, Mayer LS, Lau CW, Liu C, Palko O, Bewtra M, Consortium H, Lindesmith LC, Brewer-Jensen PD, Baric RS, Betts MR, Naji A, Wherry EJ, Tomov VT. 2021. Norovirus-specific CD8+ T cell responses in human blood and tissues. Cell Mol Gastroenterol Hepatol, 11: 1267-1289.

    35. Ramani S, Neill FH, Opekun AR, Gilger MA, Graham DY, Estes MK, Atmar RL. 2015. Mucosal and cellular immune responses to Norwalk Virus. JID (J. Infect. Dis.), 212: 397-405.

    36. Russell CD, Unger SA, Walton M, Schwarze J. 2017. The human immune response to respiratory syncytial virus infection. Clin. Microbiol. Rev., 30: 481-502.

    37. Shanker S, Czako R, Sapparapu G, Alvarado G, Viskovska M, Sankaran B, Atmar RL, Crowe JE, Estes MK, Prasad BVV. 2016. Structural Basis for Norovirus Neutralization by an Hbga Blocking Human Iga Antibody. Proceedings of the National Academy of Sciences, vol. 113: E5830-E5837.

    38. Tamminen K, Malm M, Vesikari T, Blazevic V. 2018. Norovirus-specific mucosal antibodies correlate to systemic antibodies and block norovirus virus-like particles binding to histo-blood group antigens. Clin. Immunol., 197: 110-117.

    39. Tamminen K, Lappalainen S, Huhti L, Vesikari T, Blazevic V. 2013. Trivalent combination vaccine induces broad heterologous immune responses to norovirus and rotavirus in mice. PLoS One, 8: e70409.

    40. Tan M, Tian Y, Zhang D, Wang Q, Gao Z. 2024. Aerosol transmission of norovirus. Viruses, 16: 151.

    41. Todd, Kyle, Tripp, Ralph. 2019. Human norovirus: experimental models of infection. Viruses, 11: 151.

    42. van Beek J, de Graaf M, Al-Hello H, Allen DJ, Ambert-Balay K, Botteldoorn N, Brytting M, Buesa J, Cabrerizo M, Chan M, Cloak F, Bart D, olo I, Guix S, Hewitt J, Iritani N, Jin M, Johne R, Lederer I, Mans J, Martella V, NoroNet. 2018. Molecular surveillance of norovirus, 2005-16: an epidemiological analysis of data collected from the noronet network. Lancet Infect. Dis., 18: 545-553.

    43. Verma V, Tan W, Puth S, Cho K-O, Lee SE, Rhee JH. 2016. Norovirus (NOV) specific protective immune responses induced by recombinant P dimer vaccine are enhanced by the mucosal adjuvant FlaB. J. Transl. Med., 14: 135.

    44. Wang X, Ku Z, Dai W, Chen T, Ye X, Zhang C, Zhang Y, Liu Q, Jin X, Huang Z. 2015. A bivalent virus-like particle based vaccine induces a balanced antibody response against both enterovirus 71 and norovirus in mice. Vaccine, 33: 5779-5785.

    45. Xing, M., Hu, G., Wang, X., Wang, Y., He, F., Dai, W., Wang, X., Niu, Y., Liu, J., Liu, H., Zhang, X., Xu, J., Cai, Q., Zhou, D., 2024. An intranasal combination vaccine induces systemic and mucosal immunity against COVID-19 and influenza. NPJ Vaccines 9, 64.

    46. Xing M, Wang Y, Wang X, Liu J, Dai W, Hu G, He F, Zhao Q, Li Y, Sun L, Wang Y, Du S, Dong Z, Pang C, Hu Z, Zhang X, Xu J, Cai Q, Zhou D. 2023. Broad-spectrum vaccine via combined immunization routes triggers potent immunity to SARS-CoV-2 and its variants. J. Virol., 97: e0072423.

  • 加载中
  • 10.1016j.virs.2024.07.002-ESM.docx

Figures(1)

Article Metrics

Article views(1069) PDF downloads(3) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    A quadrivalent norovirus vaccine based on a chimpanzee adenovirus vector induces potent immunity in mice

      Corresponding author: Hui Liu, liuhui@kangh.com
      Corresponding author: Ping Zhou, 17317825924@163.com
      Corresponding author: Dongming Zhou, zhoudongming@tmu.edu.cn
    • a. Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China;
    • b. Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China;
    • c. R&D Centre, Chengdu Kanghua Biological Products Co., Ltd, Chengdu, 610000, China;
    • d. Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China

    Abstract: Norovirus (NoV) infection is a major cause of gastroenteritis worldwide. The virus poses great challenges in developing vaccines with broad immune protection due to its genetic and antigenic diversity. To date, there are no approved NoV vaccines for clinical use. Here, we aimed to develop a broad-acting quadrivalent NoV vaccine based on a chimpanzee adenovirus vector, AdC68, carrying the major capsid protein (VP1) of noroviral GI and GII genotypes. Compared to intramuscular (i.m.), intranasal (i.n.), or other prime-boost immunization regimens (i.m. + i.m., i.m. + i.n., i.n. + i.m.), AdC68-GI.1-GII.3 (E1)-GII.4-GII.17 (E3), administered via i.n. + i.n. induced higher titers of serum IgG antibodies and higher IgA antibodies in bronchoalveolar lavage fluid (BALF) and saliva against the four homologous VP1s in mice. It also significantly stimulated the production of blocking antibodies against the four genotypes. In response to re-stimulation with virus-like particles (VLP)-GI.1, VLP-GII.3, VLP-GII.4, and VLP-GII.17, the quadrivalent vaccine administered according to the i.n. + i.n. regimen effectively triggered specific cell-mediated immune responses, primarily characterized by IFN-γ secretion. Furthermore, the preparation of this novel quadrivalent NoV vaccine requires only a single recombinant adenovirus to provide broad preventive immunity against the major GI/GII epidemic strains, making it a promising vaccine candidate for further development.

    Figure (1)  Reference (46) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return