. doi: 10.1016/j.virs.2024.08.001
Citation: Yujie Fang, Zhou Gong, Miaomiao You, Ke Peng. Identification of a novel caspase cleavage motif AEAD .VIROLOGICA SINICA, 2024, 39(5) : 755-766.  http://dx.doi.org/10.1016/j.virs.2024.08.001

新的caspase切割基序AEAD的鉴定

cstr: 32224.14.j.virs.2024.08.001
  • 通讯作者: 彭珂, pengke@wh.iov.cn
  • 收稿日期: 2023-03-14
    录用日期: 2023-06-16
  • 许多病毒的感染会诱发caspase激活以调控多种细胞通路,包括程序性细胞死亡和免疫信号通路等。Caspase切割位点及底物的特征对于理解caspase激活后的调控机制很重要。我们鉴定并分析了一个新的caspase切割基序AEAD,并证实caspase可以在该基序处切割天然底物,例如一氧化氮相关蛋白1(NOA1)。通过AEAD基序将增强型绿色荧光蛋白EGFP与线粒体标记蛋白Tom20融合后会使EGFP定位到线粒体。而在仙台病毒(SeV)或单纯疱疹病毒1型(HSV-1)感染诱发caspase激活后,由于caspase介导的融合蛋白的切割,使得EGFP信号弥散在细胞中,从而可对病毒诱发的caspase激活进行可视化检测。AEAD肽的衍生抑制剂Z-AEAD-FMK能显着抑制caspases-1、-3、-6、-7、-8和-9的活性,表现出广谱的caspase抑制效果。该抑制剂可以进一步抑制BID、PARP1、LMNA、pro-IL-1β、pro-IL-18、GSDMD和GSDME等caspase下游底物的切割,从而保护细胞抵抗病毒诱发的凋亡和焦亡等细胞程序性死亡。总的来说,该研究结果为鉴定新的caspase切割基序以及开发新的caspase抑制剂和抗炎药物提供了新思路。

Identification of a novel caspase cleavage motif AEAD

  • Corresponding author: Ke Peng, pengke@wh.iov.cn
  • Received Date: 14 March 2023
    Accepted Date: 16 June 2023
  • Infections of many viruses induce caspase activation to regulate multiple cellular pathways, including programmed cell death, immune signaling and etc. Characterizations of caspase cleavage sites and substrates are important for understanding the regulation mechanisms of caspase activation. Here, we identified and analyzed a novel caspase cleavage motif AEAD, and confirmed its caspase dependent cleavage activity in natural substrate, such as nitric oxide-associated protein 1 (NOA1). Fusing the enhanced green fluorescent protein (EGFP) with the mitochondrial marker protein Tom20 through the AEAD motif peptide localized EGFP to the mitochondria. Upon the activation of caspase triggered by Sendai virus (SeV) or herpes simplex virus type 1 (HSV-1) infection, EGFP diffusely localized to the cell due to the caspase-mediated cleavage, thus allowing visual detection of the virus-induced caspase activation. An AEAD peptide-derived inhibitor Z-AEAD-FMK were developed, which significantly inhibited the activities of caspases-1, -3, -6, -7, -8 and -9, exhibiting a broad caspase inhibition effect. The inhibitor further prevented caspases-mediated cleavage of downstream substrates, including BID, PARP1, LMNA, pro-IL-1β, pro-IL-18, GSDMD and GSDME, protecting cells from virus-induced apoptotic and pyroptotic cell death. Together, our findings provide a new perspective for the identification of novel caspase cleavage motifs and the development of new caspase inhibitors and anti-inflammatory drugs.

  • 加载中
    1. Adam-Klages, S., Schwandner, R., Luschen, S., Ussat, S., Kreder, D., Kronke, M., 1998. Caspase-mediated inhibition of human cytosolic phospholipase A2 during apoptosis. J. Immunol., 161, 5687-5694.

    2. Bae, S.S., Perry, D.K., Oh, Y.S., Choi, J.H., Galadari, S.H., Ghayur, T., Ryu, S.H., Hannun, Y.A., Suh, P.G., 2000. Proteolytic cleavage of phospholipase C-gamma1 during apoptosis in Molt-4 cells. FASEB J, 14, 1083-1092.

    3. Bergsbaken, T., Fink, S.L., Cookson, B.T., 2009. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol., 7, 99-109.

    4. Boldin, M.P., Goncharov, T.M., Goltsev, Y.V., Wallach, D., 1996. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell, 85, 803-815.

    5. Bushell, M., Wood, W., Clemens, M.J., Morley, S.J., 2000. Changes in integrity and association of eukaryotic protein synthesis initiation factors during apoptosis. Eur. J. Biochem., 267, 1083-1091.

    6. Casciola-Rosen, L., Garcia-Calvo, M., Bull, H.G., Becker, J.W., Hines, T., Thornberry, N.A., Rosen, A., 2007. Mouse and human granzyme B have distinct tetrapeptide specificities and abilities to recruit the bid pathway. J. Biol. Chem., 282, 4545-4552.

    7. Casciola-Rosen, L.A., Anhalt, G.J., Rosen, A., 1995. DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J. Exp. Med., 182, 1625-1634.

    8. Chang, J., Xie, M., Shah, V.R., Schneider, M.D., Entman, M.L., Wei, L., Schwartz, R.J., 2006. Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc. Natl. Acad. Sci. U. S. A., 103, 14495-14500.

    9. Chaudhry, P., Singh, M., Parent, S., Asselin, E., 2012. Prostate apoptosis response 4 (Par-4), a novel substrate of caspase-3 during apoptosis activation. Mol. Cell. Biol., 32, 826-839.

    10. Chen, H., Ning, X., Jiang, Z., 2017. Caspases control antiviral innate immunity. Cell. Mol. Immunol., 14, 736-747.

    11. Chen, M.H., Hagemann, T.L., Quinlan, R.A., Messing, A., Perng, M.D., 2013. Caspase cleavage of GFAP produces an assembly-compromised proteolytic fragment that promotes filament aggregation. ASN Neuro, 5, e00125.

    12. Coleman, M.L., Sahai, E.A., Yeo, M., Bosch, M., Dewar, A., Olson, M.F., 2001. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat. Cell Biol., 3, 339-345.

    13. Crawford, E.D., Wells, J.A., 2011. Caspase substrates and cellular remodeling. Annu. Rev. Biochem., 80, 1055-1087.

    14. Danley, D.E., Chuang, T.H., Bokoch, G.M., 1996. Defective Rho GTPase regulation by IL-1 beta-converting enzyme-mediated cleavage of D4 GDP dissociation inhibitor. J. Immunol., 157, 500-503.

    15. Datta, R., Kojima, H., Yoshida, K., Kufe, D., 1997. Caspase-3-mediated cleavage of protein kinase C theta in induction of apoptosis. J. Biol. Chem., 272, 20317-20320.

    16. Demontis, S., Rigo, C., Piccinin, S., Mizzau, M., Sonego, M., Fabris, M., Brancolini, C., Maestro, R., 2006. Twist is substrate for caspase cleavage and proteasome-mediated degradation. Cell Death Differ., 13, 335-345.

    17. Dhani, S., Zhao, Y., Zhivotovsky, B., 2021. A long way to go: caspase inhibitors in clinical use. Cell Death Dis., 12, 949.

    18. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., Nagata, S., 1998. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 391, 43-50.

    19. Fan, T.J., Han, L.H., Cong, R.S., Liang, J., 2005. Caspase family proteases and apoptosis. Acta Biochim. Biophys. Sin. (Shanghai), 37, 719-727.

    20. Frutos, S., Moscat, J., Diaz-Meco, M.T., 1999. Cleavage of zetaPKC but not lambda/iotaPKC by caspase-3 during UV-induced apoptosis. J. Biol. Chem., 274, 10765-10770.

    21. Galvan, V., Chen, S., Lu, D., Logvinova, A., Goldsmith, P., Koo, E.H., Bredesen, D.E., 2002. Caspase cleavage of members of the amyloid precursor family of proteins. J. Neurochem., 82, 283-294.

    22. Gervais, F.G., Xu, D., Robertson, G.S., Vaillancourt, J.P., Zhu, Y., Huang, J., Leblanc, A., Smith, D., Rigby, M., Shearman, M.S., Clarke, E.E., Zheng, H., Van Der Ploeg, L.H., Ruffolo, S.C., Thornberry, N.A., Xanthoudakis, S., Zamboni, R.J., Roy, S., Nicholson, D.W., 1999. Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell, 97, 395-406.

    23. Henis-Korenblit, S., Strumpf, N.L., Goldstaub, D., Kimchi, A., 2000. A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation. Mol. Cell. Biol., 20, 496-506.

    24. Herrant, M., Jacquel, A., Marchetti, S., Belhacene, N., Colosetti, P., Luciano, F., Auberger, P., 2004. Cleavage of Mcl-1 by caspases impaired its ability to counteract Bim-induced apoptosis. Oncogene, 23, 7863-7873.

    25. Hirota, J., Furuichi, T., Mikoshiba, K., 1999. Inositol 1, 4, 5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner. J. Biol. Chem., 274, 34433-34437.

    26. Hou, J., Zhao, R., Xia, W., Chang, C.W., You, Y., Hsu, J.M., Nie, L., Chen, Y., Wang, Y.C., Liu, C., Wang, W.J., Wu, Y., Ke, B., Hsu, J.L., Huang, K., Ye, Z., Yang, Y., Xia, X., Li, Y., Li, C.W., Shao, B., Tainer, J.A., Hung, M.C., 2020. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol., 22, 1264-1275.

    27. Huang, C.Y., Wu, Y.M., Hsu, C.Y., Lee, W.S., Lai, M.D., Lu, T.J., Huang, C.L., Leu, T.H., Shih, H.M., Fang, H.I., Robinson, D.R., Kung, H.J., Yuan, C.J., 2002. Caspase activation of mammalian sterile 20-like kinase 3 (Mst3). Nuclear translocation and induction of apoptosis. J. Biol. Chem., 277, 34367-34374.

    28. Irmler, M., Steiner, V., Ruegg, C., Wajant, H., Tschopp, J., 2000. Caspase-induced inactivation of the anti-apoptotic TRAF1 during Fas ligand-mediated apoptosis. FEBS Lett., 468, 129-133.

    29. Irmler, M., Thome, M., Hahne, M., Schneider, P., Hofmann, K., Steiner, V., Bodmer, J.L., Schroter, M., Burns, K., Mattmann, C., Rimoldi, D., French, L.E., Tschopp, J., 1997. Inhibition of death receptor signals by cellular FLIP. Nature, 388, 190-195.

    30. Janicke, R.U., Walker, P.A., Lin, X.Y., Porter, A.G., 1996. Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. EMBO J., 15, 6969-6978.

    31. Joselin, A.P., Schulze-Osthoff, K., Schwerk, C., 2006. Loss of Acinus inhibits oligonucleosomal DNA fragmentation but not chromatin condensation during apoptosis. J. Biol. Chem., 281, 12475-12484.

    32. Kanuka, H., Kuranaga, E., Takemoto, K., Hiratou, T., Okano, H., Miura, M., 2005. Drosophila caspase transduces Shaggy/GSK-3beta kinase activity in neural precursor development. EMBO J., 24, 3793-3806.

    33. Kelotra, S., Jain, M., Kelotra, A., Jain, I., Bandaru, S., Nayarisseri, A., Bidwai, A., 2014. An in silico appraisal to identify high affinity anti-apoptotic synthetic tetrapeptide inhibitors targeting the mammalian caspase 3 enzyme. Asian Pac. J. Cancer Prev., 15, 10137-10142.

    34. Koyama, A.H., Irie, H., Fukumori, T., Hata, S., Iida, S., Akari, H., Adachi, A., 1998. Role of virus-induced apoptosis in a host defense mechanism against virus infection. J. Med. Invest., 45, 37-45.

    35. Ku, N.O., Liao, J., Omary, M.B., 1997. Apoptosis generates stable fragments of human type I keratins. J. Biol. Chem., 272, 33197-33203.

    36. Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G., Earnshaw, W.C., 1994. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature, 371, 346-347.

    37. Lee, K.K., Ohyama, T., Yajima, N., Tsubuki, S., Yonehara, S., 2001. MST, a physiological caspase substrate, highly sensitizes apoptosis both upstream and downstream of caspase activation. J. Biol. Chem., 276, 19276-19285.

    38. Lee, M.W., Hirai, I., Wang, H.G., 2003. Caspase-3-mediated cleavage of Rad9 during apoptosis. Oncogene, 22, 6340-6346.

    39. Lee, Z.H., Lee, S.E., Kwack, K., Yeo, W., Lee, T.H., Bae, S.S., Suh, P.G., Kim, H.H., 2001. Caspase-mediated cleavage of TRAF3 in FasL-stimulated Jurkat-T cells. J. Leukoc. Biol., 69, 490-496.

    40. Li, H., Zhu, H., Xu, C.J., Yuan, J., 1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 94, 491-501.

    41. Liu, X., Zou, H., Slaughter, C., Wang, X., 1997. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell, 89, 175-184.

    42. Lu, Y., Luo, Z., Bregman, D.B., 2002. RNA polymerase II large subunit is cleaved by caspases during DNA damage-induced apoptosis. Biochem. Biophys. Res. Commun., 296, 954-961.

    43. Martin, S.J., Finucane, D.M., Amarante-Mendes, G.P., O'brien, G.A., Green, D.R., 1996. Phosphatidylserine externalization during CD95-induced apoptosis of cells and cytoplasts requires ICE/CED-3 protease activity. J. Biol. Chem., 271, 28753-28756.

    44. Munday, N.A., Vaillancourt, J.P., Ali, A., Casano, F.J., Miller, D.K., Molineaux, S.M., Yamin, T.T., Yu, V.L., Nicholson, D.W., 1995. Molecular cloning and pro-apoptotic activity of ICErelII and ICErelIII, members of the ICE/CED-3 family of cysteine proteases. J. Biol. Chem., 270, 15870-15876.

    45. Na, S., Chuang, T.H., Cunningham, A., Turi, T.G., Hanke, J.H., Bokoch, G.M., Danley, D.E., 1996. D4-GDI, a substrate of CPP32, is proteolyzed during Fas-induced apoptosis. J. Biol. Chem., 271, 11209-11213.

    46. Ohtsubo, T., Kamada, S., Mikami, T., Murakami, H., Tsujimoto, Y., 1999. Identification of NRF2, a member of the NF-E2 family of transcription factors, as a substrate for caspase-3(-like) proteases. Cell Death Differ., 6, 865-872.

    47. Orzalli, M.H., Kagan, J.C., 2017. Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends Cell Biol., 27, 800-809.

    48. Poreba, M., Strozyk, A., Salvesen, G.S., Drag, M., 2013. Caspase substrates and inhibitors. Cold Spring Harb. Perspect. Biol., 5, a008680.

    49. Qi, H., Juo, P., Masuda-Robens, J., Caloca, M.J., Zhou, H., Stone, N., Kazanietz, M.G., Chou, M.M., 2001. Caspase-mediated cleavage of the TIAM1 guanine nucleotide exchange factor during apoptosis. Cell Growth Differ., 12, 603-611.

    50. Rawlings, N.D., Barrett, A.J., Bateman, A., 2010. MEROPS: the peptidase database. Nucleic Acids Res., 38, D227-D233.

    51. Rawlings, N.D., O'brien, E., Barrett, A.J., 2002. MEROPS: the protease database. Nucleic Acids Res., 30, 343-346.

    52. Rheaume, E., Cohen, L.Y., Uhlmann, F., Lazure, C., Alam, A., Hurwitz, J., Sekaly, R.P., Denis, F., 1997. The large subunit of replication factor C is a substrate for caspase-3 in vitro and is cleaved by a caspase-3-like protease during Fas-mediated apoptosis. EMBO J., 16, 6346-6354.

    53. Rudolphi, K., Gerwin, N., Verzijl, N., Van Der Kraan, P., Van Den Berg, W., 2003. Pralnacasan, an inhibitor of interleukin-1beta converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage, 11, 738-746.

    54. Sahara, S., Aoto, M., Eguchi, Y., Imamoto, N., Yoneda, Y., Tsujimoto, Y., 1999. Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature, 401, 168-173.

    55. Satoh, S., Hijikata, M., Handa, H., Shimotohno, K., 1999. Caspase-mediated cleavage of eukaryotic translation initiation factor subunit 2alpha. Biochem. J., 342 (Pt 1), 65-70.

    56. Seaman, J.E., Julien, O., Lee, P.S., Rettenmaier, T.J., Thomsen, N.D., Wells, J.A., 2016. Cacidases: caspases can cleave after aspartate, glutamate and phosphoserine residues. Cell Death Differ., 23, 1717-1726.

    57. Sebbagh, M., Renvoize, C., Hamelin, J., Riche, N., Bertoglio, J., Breard, J., 2001. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat. Cell Biol., 3, 346-352.

    58. Sekine, Y., Yamamoto, C., Kakisaka, M., Muromoto, R., Kon, S., Ashitomi, D., Fujita, N., Yoshimura, A., Oritani, K., Matsuda, T., 2012. Signal-transducing adaptor protein-2 modulates Fas-mediated T cell apoptosis by interacting with caspase-8. J. Immunol., 188, 6194-6204.

    59. Shalini, S., Dorstyn, L., Dawar, S., Kumar, S., 2015. Old, new and emerging functions of caspases. Cell Death Differ., 22, 526-539.

    60. Takeda, Y., Caudell, P., Grady, G., Wang, G., Suwa, A., Sharp, G.C., Dynan, W.S., Hardin, J.A., 1999. Human RNA helicase A is a lupus autoantigen that is cleaved during apoptosis. J. Immunol., 163, 6269-6274.

    61. Tesco, G., Koh, Y.H., Kang, E.L., Cameron, A.N., Das, S., Sena-Esteves, M., Hiltunen, M., Yang, S.H., Zhong, Z., Shen, Y., Simpkins, J.W., Tanzi, R.E., 2007. Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron, 54, 721-737.

    62. Trott, O., Olson, A.J., 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 31, 455-461.

    63. Tsuchiya, K., 2020. Inflammasome-associated cell death: pyroptosis, apoptosis, and physiological implications. Microbiol. Immunol., 64, 252-269.

    64. Van Damme, P., Martens, L., Van Damme, J., Hugelier, K., Staes, A., Vandekerckhove, J., Gevaert, K., 2005. Caspase-specific and nonspecific in vivo protein processing during Fas-induced apoptosis. Nat. Methods, 2, 771-777.

    65. Vanags, D.M., Porn-Ares, M.I., Coppola, S., Burgess, D.H., Orrenius, S., 1996. Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J. Biol. Chem., 271, 31075-31085.

    66. Vande Walle, L., Lamkanfi, M., 2016. Pyroptosis. Curr. Biol., 26, R568-R572.

    67. Wang, K., Sun, Q., Zhong, X., Zeng, M., Zeng, H., Shi, X., Li, Z., Wang, Y., Zhao, Q., Shao, F., Ding, J., 2020. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell, 180, 941-955.e920.

    68. Wang, K.K., Posmantur, R., Nath, R., Mcginnis, K., Whitton, M., Talanian, R.V., Glantz, S.B., Morrow, J.S., 1998. Simultaneous degradation of alphaII- and betaII-spectrin by caspase 3 (CPP32) in apoptotic cells. J. Biol. Chem., 273, 22490-22497.

    69. Wang, X., Pai, J.T., Wiedenfeld, E.A., Medina, J.C., Slaughter, C.A., Goldstein, J.L., Brown, M.S., 1995. Purification of an interleukin-1 beta converting enzyme-related cysteine protease that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains. J. Biol. Chem., 270, 18044-18050.

    70. Wang, Y., Ning, X., Gao, P., Wu, S., Sha, M., Lv, M., Zhou, X., Gao, J., Fang, R., Meng, G., Su, X., Jiang, Z., 2017. Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus infection. Immunity, 46, 393-404.

    71. Weng, C., Li, Y., Xu, D., Shi, Y., Tang, H., 2005. Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. J. Biol. Chem., 280, 10491-10500.

    72. Werner, M.E., Chen, F., Moyano, J.V., Yehiely, F., Jones, J.C., Cryns, V.L., 2007. Caspase proteolysis of the integrin beta4 subunit disrupts hemidesmosome assembly, promotes apoptosis, and inhibits cell migration. J. Biol. Chem., 282, 5560-5569.

    73. Wickramasinghe, V.O., Mcmurtrie, P.I., Marr, J., Amagase, Y., Main, S., Mills, A.D., Laskey, R.A., Takei, Y., 2011. MCM3AP is transcribed from a promoter within an intron of the overlapping gene for GANP. J. Mol. Biol., 406, 355-361.

    74. Wu, W., Misra, R.S., Russell, J.Q., Flavell, R.A., Rincon, M., Budd, R.C., 2006. Proteolytic regulation of nuclear factor of activated T (NFAT) c2 cells and NFAT activity by caspase-3. J. Biol. Chem., 281, 10682-10690.

    75. Yakovlev, A.G., Di, X., Movsesyan, V., Mullins, P.G., Wang, G., Boulares, H., Zhang, J., Xu, M., Faden, A.I., 2001. Presence of DNA fragmentation and lack of neuroprotective effect in DFF45 knockout mice subjected to traumatic brain injury. Mol. Med., 7, 205-216.

    76. Yin, X., Gu, S., Jiang, J.X., 2001. The development-associated cleavage of lens connexin 45.6 by caspase-3-like protease is regulated by casein kinase II-mediated phosphorylation. J. Biol. Chem., 276, 34567-34572.

    77. Zheng, M., Karki, R., Vogel, P., Kanneganti, T.D., 2020. Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell, 181, 674-687 e613.

    78. Zhou, X., Jiang, W., Liu, Z., Liu, S., Liang, X., 2017. Virus infection and death receptor-mediated apoptosis. Viruses, 9, 316.

  • 加载中

Figures(1)

Article Metrics

Article views(519) PDF downloads(4) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Identification of a novel caspase cleavage motif AEAD

      Corresponding author: Ke Peng, pengke@wh.iov.cn
    • a. State Key Laboratory of Virology, Center for Antiviral Research, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China;
    • b. University of Chinese Academy of Sciences, Beijing, 100049, China;
    • c. State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences, Wuhan, 430071, China;
    • d. Provincial Key Laboratory of Jiangxia, Wuhan, 430207, China

    Abstract: Infections of many viruses induce caspase activation to regulate multiple cellular pathways, including programmed cell death, immune signaling and etc. Characterizations of caspase cleavage sites and substrates are important for understanding the regulation mechanisms of caspase activation. Here, we identified and analyzed a novel caspase cleavage motif AEAD, and confirmed its caspase dependent cleavage activity in natural substrate, such as nitric oxide-associated protein 1 (NOA1). Fusing the enhanced green fluorescent protein (EGFP) with the mitochondrial marker protein Tom20 through the AEAD motif peptide localized EGFP to the mitochondria. Upon the activation of caspase triggered by Sendai virus (SeV) or herpes simplex virus type 1 (HSV-1) infection, EGFP diffusely localized to the cell due to the caspase-mediated cleavage, thus allowing visual detection of the virus-induced caspase activation. An AEAD peptide-derived inhibitor Z-AEAD-FMK were developed, which significantly inhibited the activities of caspases-1, -3, -6, -7, -8 and -9, exhibiting a broad caspase inhibition effect. The inhibitor further prevented caspases-mediated cleavage of downstream substrates, including BID, PARP1, LMNA, pro-IL-1β, pro-IL-18, GSDMD and GSDME, protecting cells from virus-induced apoptotic and pyroptotic cell death. Together, our findings provide a new perspective for the identification of novel caspase cleavage motifs and the development of new caspase inhibitors and anti-inflammatory drugs.

    Figure (1)  Reference (78) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return