. doi: 10.1016/j.virs.2024.08.004
Citation: Xiu-Li Yan, Jian Li, Qing-Qing Ma, Hong-Jiang Wang, Lin Li, Hui Zhao, Cheng-Feng Qin, Xiao-Feng Li. Identification of mutations in viral proteins involved in cell adaptation using a reverse genetic system of the live attenuated hepatitis A virus vaccine H2 strain .VIROLOGICA SINICA, 2024, 39(6) : 882-891.  http://dx.doi.org/10.1016/j.virs.2024.08.004

利用甲型肝炎减毒活疫苗H2株的反向遗传系统发现病毒蛋白中的细胞适应性突变

cstr: 32224.14.j.virs.2024.08.004
  • 甲型肝炎减毒活疫苗H2株是将野生型甲肝病毒H2w分离株在细胞中连续传代后获得的,其减毒机制仍不清楚。在本研究中,我们使用融合技术构建了H2株的全长感染性cDNA克隆。由cDNA克隆拯救获得的H2株(H2ic)与亲本H2株在肝癌细胞系Huh7.5.1和用于疫苗生产的2BS细胞系中均能有效复制。此外,H2ic与H2感染均未导致Ifnar1-/-C57小鼠出现肝损伤疾病。为了鉴定H2株基因组中的细胞适应性突变,以其感染性cDNA克隆为骨架,将H2w的非结构蛋白替换H2ic的相应区段后获得了系列嵌合病毒。与H2ic相比,携带H2w的3C或3D蛋白的嵌合病毒在Huh7.5.1和2BS细胞系中的复制力减弱。携带H2w的2B、2C或3A蛋白的嵌合病毒未拯救成活。此外,H2ic和嵌合病毒在小鼠中的致病性无显著差异。上述结果表明,2B、2C和3A蛋白中的适应性突变对于H2株在细胞培养中的有效复制至关重要。3C和3D蛋白的突变有助于进一步增强病毒在细胞中的复制能力,但不影响病毒在小鼠中的减毒表型。本研究构建了甲肝减毒活疫苗H2株的第一个反向遗传学系统,以此为工具发现了该减毒株适应细胞培养所必需的病毒蛋白。

Identification of mutations in viral proteins involved in cell adaptation using a reverse genetic system of the live attenuated hepatitis A virus vaccine H2 strain

  • The live attenuated hepatitis A virus vaccine H2 strain was developed by passaging a wild-type H2w isolate in cell cultures. Currently, the mechanism underlying its attenuation phenotype remain largely unknown. In this study, we generated a full-length infectious cDNA clone of the H2 strain using in-fusion techniques. The recovered H2 strain (H2ic) from the cDNA clone exhibited an efficient replication in both the hepatoma cell line Huh7.5.1 and the 2BS cell line used for vaccine production, similar to the parental H2 strain. Additionally, H2ic did not cause disease in Ifnar1-/- C57 mice, consistent with the H2 strain. To explore the cell-adaptive mutations of the H2 strain, chimeric viruses were generated by replacing its non-structural proteins with corresponding regions from H2w using the infectious cDNA clone as a genetic backbone. The chimeric viruses carrying the 3C or 3D proteins from H2w showed decreased replication in Huh7.5.1 and 2BS cell lines compared to H2ic. Other chimeric viruses containing the 2B, 2C, or 3A proteins from H2w failed to be recovered. Furthermore, there were no significant differences in disease manifestation in mice between H2ic and the recovered chimeric viruses. These results demonstrate that adaptive mutations in the 2B, 2C, and 3A proteins are essential for efficient replication of the H2 strain in cell cultures. Mutations in the 3C and 3D proteins contribute to enhanced replication in cell cultures but did not influence the attenuated phenotypes in mice. Together, this study presents the first reverse genetic system of the H2 strain and identifies viral proteins essential for adaptation to cell cultures.

  • 加载中
    1. Andre, F.E., D'Hondt, E., Delem, A., Safary, A., 1992. Clinical assessment of the safety and efficacy of an inactivated hepatitis A vaccine: rationale and summary of findings. Vaccine. 10, S160-168.

    2. Blight, K.J., McKeating, J.A., Rice, C.M., 2002. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J. Virol. 76, 13001-13014.

    3. Chen, P., Wojdyla, J.A., Colasanti, O., Li, Z., Qin, B., Wang, M., Lohmann, V., Cui, S., 2022. Biochemical and structural characterization of hepatitis A virus 2C reveals an unusual ribonuclease activity on single-stranded RNA. Nucleic Acids Res. 50, 9470-9489.

    4. Ciervo, A., Beneduce, F., Morace, G., 1998. Polypeptide 3AB of hepatitis A virus is a transmembrane protein. Biochem. Biophys. Res. Commun. 249, 266-274.

    5. Cohen, J.I., Ticehurst, J.R., Feinstone, S.M., Rosenblum, B., Purcell, R.H., 1987. Hepatitis A virus cDNA and its RNA transcripts are infectious in cell culture. J. Virol. 61, 3035-3039.

    6. Cohen, J.I., Rosenblum, B., Feinstone, S.M., Ticehurst, J., Purcell, R.H., 1989. Attenuation and cell culture adaptation of hepatitis A virus (HAV): a genetic analysis with HAV cDNA. J. Virol. 63, 5364-5370.

    7. Cui, F., Liang, X., Wang, F., Zheng, H., Hutin, Y.J., Yang, W., 2014. Development, production, and postmarketing surveillance of hepatitis A vaccines in China. J. Epidemiol. 24, 169-177.

    8. Emerson, S.U., Huang, Y.K., McRill, C., Lewis, M., Purcell, R.H., 1992. Mutations in both the 2B and 2C genes of hepatitis A virus are involved in adaptation to growth in cell culture. J. Virol. 66, 650-654.

    9. Emerson, S.U., Huang, Y.K., Nguyen, H., Brockington, A., Govindarajan, S., St Claire, M., Shapiro, M., Purcell, R.H., 2002. Identification of VP1/2A and 2C as virulence genes of hepatitis A virus and demonstration of genetic instability of 2C. 76, 8551-8559.

    10. Emerson, S. U., Huang, Y. K., Purcell, R. H., 1993. 2B and 2C mutations are essential but mutations throughout the genome of HAV contribute to adaptation to cell culture. Virology. 194, 475-480.

    11. Fujiwara, K., Yokosuka, O., Fukai, K., Imazeki, F., Saisho, H., Omata, M., 2001. Analysis of full-length hepatitis A virus genome in sera from patients with fulminant and self-limited acute type A hepatitis. J. Hepatol. 35, 112-119.

    12. Funkhouser, A.W., Purcell, R.H., D'Hondt, E., Emerson, S.U., 1994. Attenuated hepatitis A virus: genetic determinants of adaptation to growth in MRC-5 cells. J. Virol. 68, 148-157.

    13. Gosert, R., Cassinotti, P., Siegl, G., Weitz, M., 1996. Identification of hepatitis A virus non-structural protein 2B and its release by the major virus protease 3C. J. Gen. Virol. 77, 247-255.

    14. Graff, J., Kasang, C., Normann, A., Pfisterer-Hunt, M., Feinstone, S.M., Flehmig, B., 1994. Mutational events in consecutive passages of hepatitis A virus strain GBM during cell culture adaptation. Virology. 204, 60-68.

    15. Hirai-Yuki, A., Hensley, L., McGivern, D.R., Gonzalez-Lopez, O., Das, A., Feng, H., Sun, L., Wilson, J.E., Hu, F., Feng, Z., et al., 2016. MAVS-dependent host species range and pathogenicity of human hepatitis A virus. 353, 1541-1545.

    16. Hu, N.Z., Hu, Y.Z., Shi, H.J., Liu, G.D., Qu, S., 2002a. Mutational characteristics in consecutive passage of rapidly replicating variants of hepatitis A virus strain H2 during cell culture adaptation. World J. Gastroenterol. 8, 872-878.

    17. Jecht, M., Probst, C., Gauss-Muller, V., 1998. Membrane permeability induced by hepatitis A virus proteins 2B and 2BC and proteolytic processing of HAV 2BC. Virology. 252, 218-227.

    18. Jiang, W., Muhammad, F., Ma, P., Liu, X., Long, G., 2018. Sofosbuvir inhibits hepatitis A virus replication in vitro assessed by a cell-based fluorescent reporter system. 154, 51-57.

    19. Lemon, S.M., Binn, L.N., Marchwicki, R., Murphy, P.C., Ping, L.H., Jansen, R.W., Asher, L.V. S., Stapleton, J.T., Taylor, D.G., LeDuc, J.W., 1990. In vivo replication and reversion to wild type of a neutralization-resistant antigenic variant of hepatitis A virus. J. Infect. Dis. 161, 7-13.

    20. Ma, Q.Q., Wang, H.J., Li, J., Li, M.Q., Cao, T.S., Wu, X.Y., Qiu, H.Y., Zhao, H., Qin, C.F., 2022. The infectivity and pathogenicity of hepatitis A virus live-attenuated vaccine strain H2 in type I interferon receptor-deficient mice. Virol. Sin. 37, 740-745.

    21. Mao, J.S., Xie, R.Y., Huang, H.Y., Chai, S.A., Chen, N.L., Yu, P.H., Wan, X.Z., Liu, C.J., Cao, Y.Y., Dong, D.X., 1988. Studies in monkeys of attenuated hepatitis A variants. 31, 338-343.

    22. Mao, J.S., Dong, D.X., Zhang, H.Y., Chen, N.L., Zhang, X.Y., Huang, H.Y., Xie, R.Y., Zhou, T.J., Wan, Z.J., Wang, Y.Z., 1989. Primary study of attenuated live hepatitis A vaccine (H2 strain) in humans. J. Infect. Dis. 159, 621-624.

    23. Mao, J.S., Chai, S.A., Xie, R.Y., Chen, N.L., Jiang, Q., Zhu, X.Z., Zhang, S.Y., Huang, H.Y., Mao, H.W., Bao, X.N., et al., 1997. Further evaluation of the safety and protective efficacy of live attenuated hepatitis A vaccine (H2-strain) in humans. Vaccine. 15, 944-947.

    24. Martin, A., Escriou, N., Chao, S.F., Girard, M., Lemon, S.M., Wychowski, C., 1995. Identification and site-directed mutagenesis of the primary (2A/2B) cleavage site of the hepatitis A virus polyprotein: functional impact on the infectivity of HAV RNA transcripts. Virology. 213, 213-222.

    25. McKnight, K.L., Lemon, S.M., 2018. Hepatitis A virus genome organization and replication strategy. 8: a033480.

    26. Misumi, I., Mitchell, J.E., Lund, M.M., Cullen, J.M., Lemon, S.M., Whitmire, J.K., 2021. T cells protect against hepatitis A virus infection and limit infection-induced liver injury. J. Hepatol. 75, 1323-1334.

    27. Palmenberg, A.C., 1990. Proteolytic processing of picornaviral polyprotein. Annu. Rev. Microbiol. 44, 603-623.

    28. Pisani, G., Beneduce, F., Gaussmuller, V., and Morace, G., 1995. Recombinant expression of hepatitis A virus protein 3A: interaction with membranes. Biochem. Biophys. Res. Commun. 211, 627-638.

    29. Rao, S., Mao, J.S., Motlekar, S., Fangcheng, Z., and Kadhe, G., 2016. A review of immunogenicity and tolerability of live attenuated Hepatitis A vaccine in children. 12, 3160-3165.

    30. Raychaudhuri, G., Govindarajan, S., Shapiro, M., Purcell, R.H., Emerson, S.U., 1998. Utilization of chimeras between human (HM-175) and simian (AGM-27) strains of hepatitis A virus to study the molecular basis of virulence. J. Virol. 72, 7467-7475.

    31. Shah, N., Faridi, M.M.A., Mitra, M., Bavdekar, A., Karadkhele, A., Puppalwar, G., Jain, R., 2020. Review of long term immunogenicity and tolerability of live hepatitis A vaccine. 16, 2816-2821.

    32. Shukla, A., Dey, D., Banerjee, K., Nain, A., and Banerjee, M., 2015. The C-terminal region of the non-structural protein 2B from hepatitis A virus demonstrates lipid-specific viroporin-like activity. Sci. Rep. 5, 15884.

    33. Teterina, N.L., Bienz, K., Egger, D., Gorbalenya, A.E., Ehrenfeld, E., 1997. Induction of intracellular membrane rearrangements by HAV Proteins 2C and 2BC. Virology. 237, 66-77.

    34. Van Damme, P., Pinto, R.M., Feng, Z., Cui, F., Gentile, A., Shouval, D., 2023. Hepatitis A virus infection. 9, 51.

    35. Yang, Y., Liang, Y., Qu, L., Chen, Z., Yi, M., Li, K., Lemon, S.M., 2007. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. 104, 7253-7258.

    36. Yang, Y., Yi, M., Evans, D.J., Simmonds, P.,Lemon, S.M., 2008. Identification of a conserved RNA replication element (cre) within the 3Dpol -coding sequence of hepatoviruses. J. Virol. 82, 10118-10128.

    37. Yi, M., Lemon, S.M., 2002. Replication of subgenomic hepatitis A virus RNAs expressing firefly luciferase is enhanced by mutations associated with adaptation of virus to growth in cultured cells. J. Virol. 76, 1171-1180.

    38. Zhang, H., Chao, S.P., Ping, L.H., Grace, K., Clarke, B., Lemon, S.M., 1995. An infectious cDNA clone of a cytopathic hepatitis A virus: genomic regions associated with rapid replication and cytopathic effect. Virology. 212, 686-697.

    39. Zhao, Y. L., Meng, Z. D., Xu, Z. Y., Guo, J. J., Chai, S. A., Duo, C. G., Wang, X. Y., Yao, J. F., Liu, H. B., Qi, S. X. et al., 2000. H2 strain attenuated live hepatitis A vaccines: protective efficacy in a hepatitis A outbreak. World J. Gastroenterol. 6, 829-832.

    40. WHO, 2019. The mmunological asis for mmunization eries: odule 18 - epatitis A.Available from: https://iris.who.int/handle/10665/326501 (accessed 10 April 2024).

  • 加载中

Figures(1)

Article Metrics

Article views(484) PDF downloads(10) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Identification of mutations in viral proteins involved in cell adaptation using a reverse genetic system of the live attenuated hepatitis A virus vaccine H2 strain

      Corresponding author: Cheng-Feng Qin, qincf@bmi.ac.cn
      Corresponding author: Xiao-Feng Li, xiaofeng_li_bj@163.com
    • a. School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China;
    • b. Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China;
    • c. School of Medicine, Tsinghua University, Beijing, 100084, China;
    • d. Department of Research, The Chinese People's Liberation Army Strategic Support Force Medical Center, Beijing, 100101, China

    Abstract: The live attenuated hepatitis A virus vaccine H2 strain was developed by passaging a wild-type H2w isolate in cell cultures. Currently, the mechanism underlying its attenuation phenotype remain largely unknown. In this study, we generated a full-length infectious cDNA clone of the H2 strain using in-fusion techniques. The recovered H2 strain (H2ic) from the cDNA clone exhibited an efficient replication in both the hepatoma cell line Huh7.5.1 and the 2BS cell line used for vaccine production, similar to the parental H2 strain. Additionally, H2ic did not cause disease in Ifnar1-/- C57 mice, consistent with the H2 strain. To explore the cell-adaptive mutations of the H2 strain, chimeric viruses were generated by replacing its non-structural proteins with corresponding regions from H2w using the infectious cDNA clone as a genetic backbone. The chimeric viruses carrying the 3C or 3D proteins from H2w showed decreased replication in Huh7.5.1 and 2BS cell lines compared to H2ic. Other chimeric viruses containing the 2B, 2C, or 3A proteins from H2w failed to be recovered. Furthermore, there were no significant differences in disease manifestation in mice between H2ic and the recovered chimeric viruses. These results demonstrate that adaptive mutations in the 2B, 2C, and 3A proteins are essential for efficient replication of the H2 strain in cell cultures. Mutations in the 3C and 3D proteins contribute to enhanced replication in cell cultures but did not influence the attenuated phenotypes in mice. Together, this study presents the first reverse genetic system of the H2 strain and identifies viral proteins essential for adaptation to cell cultures.

    Figure (1)  Reference (40) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return