. doi: 10.1016/j.virs.2024.08.006
Citation: An Wang, Xiao-Xu Zhu, Yuanyuan Bie, Bowen Zhang, Wenting Ji, Jing Lou, Muhan Huang, Xi Zhou, Yujie Ren. Single-cell RNA-sequencing reveals a profound immune cell response in human cytomegalovirus-infected humanized mice .VIROLOGICA SINICA, 2024, 39(5) : 782-792.  http://dx.doi.org/10.1016/j.virs.2024.08.006

单细胞RNA测序揭示人巨细胞病毒感染的人源化小鼠的免疫细胞反应

cstr: 32224.14.j.virs.2024.08.006
  • 人类巨细胞病毒(HCMV)是一种常见的疱疹病毒,持续感染着世界上大部分人口。尽管宿主免疫反应强大,但HCMV仍能复制、逃避宿主防御,并通过多种免疫调节策略在宿主细胞建立潜伏感染,因此研究HCMV感染与宿主反应之间的相互作用尤为重要。HCMV具有严格的宿主特异性,特异性感染人类。因此,大多数HCMV的体内研究依赖于临床样本。幸运的是,人源化小鼠模型的建立使得实验室内进行HCMV感染动物实验变得方便。单细胞RNA测序使我们能够在宿主单细胞水平上研究病毒与宿主基因表达之间的关系。在这项研究中,我们评估了HCMV感染的人源化小鼠中PBMCs的单细胞基因表达变化,为研究HCMV感染下的病毒-宿主相互作用提供了有价值的数据集。

Single-cell RNA-sequencing reveals a profound immune cell response in human cytomegalovirus-infected humanized mice

  • Human cytomegalovirus (HCMV) is a common herpesvirus that persistently infects a large portion of the world's population. Despite the robust host immune response, HCMV is able to replicate, evade host defenses, and establish latency throughout the lifespan by developing multiple immunomodulatory strategies, making the studies on the interaction between HCMV infection and host response particularly important. HCMV has a strict host specificity that specifically infects humans. Therefore, most of the in vivo researches of HCMV rely on clinical samples. Fortunately, the establishment of humanized mouse models allows for convenient in-lab animal experiments involving HCMV infection. Single-cell RNA sequencing enables the study of the relationship between viral and host gene expressions at the single-cell level within host cells. In this study, we assessed the gene expression alterations of PBMCs at the single-cell level within HCMV-infected humanized mice, which sheds light onto the virus-host interactions in the context of HCMV infection of humanized mice and provides a valuable dataset for the related researches.

  • 加载中
    1. Armstrong, N., Tang, Q., 2022. Congenital cytomegalovirus infection and advances in murine models of neuropathogenesis. Virol. Sin. 37, 318-320.

    2. Bravo, F. J., Cardin, R. D., Bernstein, D. I., 2007. A model of human cytomegalovirus infection in severe combined immunodeficient mice. Antivir. Res. 76, 104-110.

    3. Bruno, L., Cortese, M., Monda, G., Gentile, M., Calo, S., Schiavetti, F., Zedda, L., Cattaneo, E., Piccioli, D., Schaefer, M., Notomista, E., Maione, D., Carfi, A., Merola, M., Uematsu, Y., 2016. Human cytomegalovirus pUL 10 interacts with leukocytes and impairs TCR-mediated T-cell activation. Immunol. Cell Biol. 94, 849-860.

    4. Cho, Y. E., Lee, H., Bae, H. R., Kim, H., Yun, S., Vorn, R., Cashion, A., Rucker, M. J., Afzal, M., Latour, L., Gill, J., 2022. Circulating immune cell landscape in patients who had mild ischaemic stroke. Stroke Vasc Neurol. 7, 319-327.

    5. Chuprin, J., Buettner, H., Seedhom, M. O., Greiner, D. L., Keck, J. G., Ishikawa, F., Shultz, L. D., Brehm, M. A., 2023. Humanized mouse models for immuno-oncology research. Nat. Rev. Clin. Oncol. 20, 192-206.

    6. Cush, S. S., Anderson, K. M., Ravneberg, D. H., Weslow-Schmidt, J. L., Flano, E., 2007. Memory generation and maintenance of CD8+ T cell function during viral persistence. J. Immunol. 179, 141-153.

    7. Derbois, C., Palomares, M. A., Deleuze, J. F., Cabannes, E., Bonnet, E., 2023. Single cell transcriptome sequencing of stimulated and frozen human peripheral blood mononuclear cells. Sci. Data. 10, 433.

    8. Flanagan, S. P., 1966. 'Nude', a new hairless gene with pleiotropic effects in the mouse. Genet. Res. 8, 295-309.

    9. Fornara, C., Zavaglio, F., Furione, M., Sarasini, A., D'Angelo, P., Arossa, A., Spinillo, A., Lilleri, D., Baldanti, F., 2022. Human cytomegalovirus (HCMV) long-term shedding and HCMV-specific immune response in pregnant women with primary HCMV infection. Med. Microbiol. Immunol. 211, 249-260.

    10. Gabanti, E., Bruno, F., Fornara, C., Bernuzzi, S., Lilleri, D., Gerna, G., 2014. Polyfunctional analysis of human cytomegalovirus (HCMV)-specific CD4(+) and CD8 (+) memory T-cells in HCMV-seropositive healthy subjects following different stimuli. J. Clin. Immunol. 34, 999-1008.

    11. Katano, I., Ito, R., Kamisako, T., Eto, T., Ogura, T., Kawai, K., Suemizu, H., Takahashi, T., Kawakami, Y., Ito, M., 2014. NOD-Rag2null IL-2Rγnull mice: an alternative to NOG mice for generation of humanized mice. Exp. Anim. 63, 321-330.

    12. Kealy, L., Good-Jacobson, K. L., 2021. Advances in understanding the formation and fate of B-cell memory in response to immunization or infection. Oxf Open Immunol. 2, iqab018.

    13. Klenerman, P., Oxenius, A., 2016. T cell responses to cytomegalovirus. Nat. Rev. Immunol. 16, 367-377.

    14. Kugelberg, E., 2015. B cell memory: making sense in humans. Nat. Rev. Immunol. 15, 133.

    15. Liao, J., Qian, J., Fang, Y., Chen, Z., Zhuang, X., Zhang, N., Shao, X., Hu, Y., Yang, P., Cheng, J., Hu, Y., Yu, L., Yang, H., Zhang, J., Lu, X., Shao, L., Wu, D., Gao, Y., Chen, H., Fan, X., 2022. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution. Nat. Commun. 13, 6498.

    16. Peng, O., Wei, X., Ashraf, U., Hu, F., Xia, Y., Xu, Q., Hu, G., Xue, C., Cao, Y., Zhang, H., 2022. Genome-wide transcriptome analysis of porcine epidemic diarrhea virus virulent or avirulent strain-infected porcine small intestinal epithelial cells. Virol. Sin. 37, 70-81.

    17. Priestley, A., Beamish, H. J., Gell, D., Amatucci, A. G., Muhlmann-Diaz, M. C., Singleton, B. K., Smith, G. C., Blunt, T., Schalkwyk, L. C., Bedford, J. S., Jackson, S. P., Jeggo, P. A., Taccioli, G. E., 1998. Molecular and biochemical characterisation of DNA-dependent protein kinase-defective rodent mutant irs-20. Nucleic Acids Res. 26, 1965-1973.

    18. Ramirez-Sanchez, A. D., Chu, X., Modderman, R., Kooy-Winkelaar, Y., Koletzko, S., Korponay-Szabo, I. R., Troncone, R., Wijmenga, C., Mearin, L., Withoff, S., Jonkers, I. H., Li, Y., 2022. Single-cell RNA sequencing of peripheral blood mononuclear cells from pediatric coeliac disease patients suggests potential pre-seroconversion markers. Front. Immunol. 13, 843086.

    19. Ren, Y., Wang, A., Wu, D., Wang, C., Huang, M., Xiong, X., Jin, L., Zhou, W., Qiu, Y., Zhou, X., 2022. Dual inhibition of innate immunity and apoptosis by human cytomegalovirus protein UL37x1 enables efficient virus replication. Nat Microbiol. 7, 1041-1053.

    20. Rousseliere, A., Delbos, L., Foureau, A., Reynaud-Gaubert, M., Roux, A., Demant, X., Le Pavec, J., Kessler, R., Mornex, J. F., Messika, J., Falque, L., Le Borgne, A., Boussaud, V., Tissot, A., Hombourger, S., Bressollette-Bodin, C., Charreau, B., 2023. Changes in HCMV immune cell frequency and phenotype are associated with chronic lung allograft dysfunction. Front. Immunol. 14, 1143875.

    21. Shang, Q. N., Yu, X. X., Xu, Z. L., Chen, Y. H., Han, T. T., Zhang, Y. Y., Lv, M., Sun, Y. Q., Wang, Y., Xu, L. P., Zhang, X. H., Zhao, X. Y., Huang, X. J., 2023. Expanded clinical-grade NK cells exhibit stronger effects than primary NK cells against HCMV infection. Cell. Mol. Immunol. 20, 895-907.

    22. Shnayder, M., Nachshon, A., Rozman, B., Bernshtein, B., Lavi, M., Fein, N., Poole, E., Avdic, S., Blyth, E., Gottlieb, D., Abendroth, A., Slobedman, B., Sinclair, J., Stern-Ginossar, N., Schwartz, M., 2020. Single cell analysis reveals human cytomegalovirus drives latently infected cells towards an anergic-like monocyte state. Elife. 9, e52168.

    23. Shultz, L. D., Schweitzer, P. A., Christianson, S. W., Gott, B., Schweitzer, I. B., Tennent, B., Mckenna, S., Mobraaten, L., Rajan, T. V., Greiner, D. L., et al., 1995. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol. 154, 180-191.

    24. Smith, M. S., Goldman, D. C., Bailey, A. S., Pfaffle, D. L., Kreklywich, C. N., Spencer, D. B., Othieno, F. A., Streblow, D. N., Garcia, J. V., Fleming, W. H., Nelson, J. A., 2010. Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model. Cell Host Microbe. 8, 284-291.

    25. Stuart, T., Satija, R., 2019. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257-272.

    26. Zabalza, A., Vera, A., Alari-Pahissa, E., Munteis, E., Moreira, A., Yelamos, J., Llop, M., Lopez-Botet, M., Martinez-Rodriguez, J. E., 2020. Impact of cytomegalovirus infection on B cell differentiation and cytokine production in multiple sclerosis. J. Neuroinflammation. 17, 161.

    27. Zehner, M., Alt, M., Ashurov, A., Goldsmith, J. A., Spies, R., Weiler, N., Lerma, J., Gieselmann, L., Stohr, D., Gruell, H., Schultz, E. P., Kreer, C., Schlachter, L., Janicki, H., Laib Sampaio, K., Stegmann, C., Nemetchek, M. D., Dahling, S., Ullrich, L., Dittmer, U., Witzke, O., Koch, M., Ryckman, B. J., Lotfi, R., Mclellan, J. S., Krawczyk, A., Sinzger, C., Klein, F., 2023. Single-cell analysis of memory B cells from top neutralizers reveals multiple sites of vulnerability within HCMV Trimer and Pentamer. Immunity. 56, 2602-2620.e10.

  • 加载中
  • 10.1016j.virs.2024.08.006-ESM.docx

Figures(1)

Article Metrics

Article views(593) PDF downloads(9) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Single-cell RNA-sequencing reveals a profound immune cell response in human cytomegalovirus-infected humanized mice

      Corresponding author: Xi Zhou, zhouxi@wh.iov.cn
      Corresponding author: Yujie Ren, renyujie@wh.iov.cn
    • a. Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China;
    • b. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China;
    • c. University of Chinese Academy of Sciences, Beijing, 100049, China;
    • d. School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China

    Abstract: Human cytomegalovirus (HCMV) is a common herpesvirus that persistently infects a large portion of the world's population. Despite the robust host immune response, HCMV is able to replicate, evade host defenses, and establish latency throughout the lifespan by developing multiple immunomodulatory strategies, making the studies on the interaction between HCMV infection and host response particularly important. HCMV has a strict host specificity that specifically infects humans. Therefore, most of the in vivo researches of HCMV rely on clinical samples. Fortunately, the establishment of humanized mouse models allows for convenient in-lab animal experiments involving HCMV infection. Single-cell RNA sequencing enables the study of the relationship between viral and host gene expressions at the single-cell level within host cells. In this study, we assessed the gene expression alterations of PBMCs at the single-cell level within HCMV-infected humanized mice, which sheds light onto the virus-host interactions in the context of HCMV infection of humanized mice and provides a valuable dataset for the related researches.

    Figure (1)  Reference (27) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return