. doi: 10.1016/j.virs.2024.08.008
Citation: Dong Fang, Yan Liu, Dou Dou, Bin Su. The unique immune evasion mechanisms of the mpox virus and their implication for developing new vaccines and immunotherapies .VIROLOGICA SINICA, 2024, 39(5) : 709-718.  http://dx.doi.org/10.1016/j.virs.2024.08.008

猴痘病毒独特的免疫逃避机制及其对开发新型疫苗和免疫疗法的意义

cstr: 32224.14.j.virs.2024.08.008
  • 通讯作者: 粟斌, binsu@ccmu.edu.cn
  • 收稿日期: 2024-05-11
    录用日期: 2024-08-20
  • 猴痘是一种由正痘病毒属的猴痘病毒(mpox virus, MPXV)引起的人畜共患传染性疾病。自2022年以来,猴痘病毒对全球公共卫生构成了重大威胁,尤其是在西半球出现了数千例病例后,世界卫生组织宣布进入紧急状态。痘病毒与人类广泛的共同进化史,使这些病毒发展出了对抗人类免疫系统的复杂机制。特别是猴痘病毒,可通过独特的免疫逃逸策略对抗多种免疫因素,给治疗带来了相当大的挑战。这种情况在普通人群停止常规天花疫苗接种之后尤其突出。在本综述中,我们首先讨论了猴痘病毒的入侵和早期感染特征,接着介绍了猴痘病毒逃避固有免疫和适应性免疫反应的机制。研究发现,两个caspase-1抑制蛋白和一个PKR逃逸相关蛋白是调节MPXV感染期间免疫环境的重要枢纽。在适应性免疫方面,猴痘病毒表现出独特而强大的T细胞抑制能力,从而全面重塑宿主免疫环境。病毒包膜也对抗体和补体系统的中和作用带来了挑战。猴痘病毒独特的免疫逃逸机制使得基于多表位和核酸的新型疫苗成为极具前景的研究方向。最后,我们简要讨论了猴痘病毒感染对免疫抑制患者的影响以及目前的疫苗研发现状。本综述旨在为开发新的猴痘免疫疗法提供有价值的信息。

The unique immune evasion mechanisms of the mpox virus and their implication for developing new vaccines and immunotherapies

  • Corresponding author: Bin Su, binsu@ccmu.edu.cn
  • Received Date: 11 May 2024
    Accepted Date: 20 August 2024
  • Mpox is an infectious and contagious zoonotic disease caused by the mpox virus (MPXV), which belongs to the genus Orthopoxvirus. Since 2022, MPXV has posed a significant threat to global public health. The emergence of thousands of cases across the Western Hemisphere prompted the World Health Organization to declare an emergency. The extensive coevolutionary history of poxviruses with humans has enabled these viruses to develop sophisticated mechanisms to counter the human immune system. Specifically, MPXV employs unique immune evasion strategies against a wide range of immunological elements, presenting a considerable challenge for treatment, especially following the discontinuation of routine smallpox vaccination among the general population. In this review, we start by discussing the entry of the mpox virus and the onset of early infection, followed by an introduction to the mechanisms by which the mpox virus can evade the innate and adaptive immune responses. Two caspase-1 inhibitory proteins and a PKR escape-related protein have been identified as phylogenomic hubs involved in modulating the immune environment during the MPXV infection. With respect to adaptive immunity, mpox viruses exhibit unique and exceptional T-cell inhibition capabilities, thereby comprehensively remodeling the host immune environment. The viral envelope also poses challenges for the neutralizing effects of antibodies and the complement system. The unique immune evasion mechanisms employed by MPXV make novel multi-epitope and nucleic acid-based vaccines highly promising research directions worth investigating. Finally, we briefly discuss the impact of MPXV infection on immunosuppressed patients and the current status of MPXV vaccine development. This review may provide valuable information for the development of new immunological treatments for mpox.

  • 加载中
    1. Abdelaal A, Reda A, Lashin BI, Katamesh BE, Brakat AM, Al-Manaseer BM, Kaur S, Asija A, Patel NK, Basnyat S, Rabaan AA, Alhumaid S, Albayat H, Aljeldah M, Shammari BRA, Al-Najjar AH, Al-Jassem AK, AlShurbaji ST, Alshahrani FS, Alynbiawi A, Alfaraj ZH, Alfaraj DH, Aldawood AH, Sedhai YR, Mumbo V, Rodriguez-Morales AJ, Sah R. 2022. Preventing the next pandemic: Is live vaccine efficacious against monkeypox, or is there a need for killed virus and mRNA vaccines? Vaccines (Basel), 10, 1419.

    2. Ahmed SK, Mohamed MG, Dabou EA, Abuijlan I, Chandran D, El-Shall NA, Chopra H, Dhama K. 2023. Monkeypox (mpox) in immunosuppressed patients. F1000Res, 12: 127.

    3. Aiman S, Alhamhoom Y, Ali F, Rahman N, Rastrelli L, Khan A, Farooq QUA, Ahmed A, Khan A, Li C. 2022. Multi-epitope chimeric vaccine design against emerging monkeypox virus via reverse vaccinology techniques- a bioinformatics and immunoinformatics approach. Front Immunol, 13: 985450.

    4. Akhmetzhanov AR, Wu PH. 2024. Transmission potential of mpox in mainland china, june-july 2023: Estimating reproduction number during the initial phase of the epidemic. PeerJ, 12: e16908.

    5. Akkaraju GR, Whitaker-Dowling P, Youngner JS, Jagus R. 1989. Vaccinia specific kinase inhibitory factor prevents translational inhibition by double-stranded rna in rabbit reticulocyte lysate. J Biol Chem, 264: 10321-10325.

    6. Albarnaz JD, Ren H, Torres AA, Shmeleva EV, Melo CA, Bannister AJ, Brember MP, Chung BY, Smith GL. 2022. Molecular mimicry of NF-kappaB by vaccinia virus protein enables selective inhibition of antiviral responses. Nat Microbiol, 7: 154-168.

    7. Alzhanova D, Hammarlund E, Reed J, Meermeier E, Rawlings S, Ray CA, Edwards DM, Bimber B, Legasse A, Planer S, Sprague J, Axthelm MK, Pickup DJ, Lewinsohn DM, Gold MC, Wong SW, Sacha JB, Slifka MK, Fruh K. 2014. T cell inactivation by poxviral b22 family proteins increases viral virulence. PLoS Pathog, 10: e1004123.

    8. Americo JL, Moss B, Earl PL. 2010. Identification of wild-derived inbred mouse strains highly susceptible to monkeypox virus infection for use as small animal models. J Virol, 84: 8172-8180.

    9. Anderson MG, Frenkel LD, Homann S, Guffey J. 2003. A case of severe monkeypox virus disease in an american child: Emerging infections and changing professional values. Pediatr Infect Dis J, 22: 1093-1096; discussion 1096-1098.

    10. Ando J, Ngo MC, Ando M, Leen A, Rooney CM. 2020. Identification of protective T-cell antigens for smallpox vaccines. Cytotherapy, 22: 642-652.

    11. Arase H, Lanier LL. 2004. Specific recognition of virus-infected cells by paired nk receptors. Rev Med Virol, 14: 83-93.

    12. Arndt WD, Cotsmire S, Trainor K, Harrington H, Hauns K, Kibler KV, Huynh TP, Jacobs BL. 2015. Evasion of the innate immune type I interferon system by monkeypox virus. J Virol, 89: 10489-10499.

    13. Arndt WD, White SD, Johnson BP, Huynh T, Liao J, Harrington H, Cotsmire S, Kibler KV, Langland J, Jacobs BL. 2016. Monkeypox virus induces the synthesis of less dsRNA than vaccinia virus, and is more resistant to the anti-poxvirus drug, ibt, than vaccinia virus. Virology, 497: 125-135.

    14. Arsenio J, Deschambault Y, Cao J. 2008. Antagonizing activity of vaccinia virus E3l against human interferons in Huh7 cells. Virology, 377: 124-132.

    15. Aziz S, Almajhdi FN, Waqas M, Ullah I, Salim MA, Khan NA, Ali A. 2022. Contriving multi-epitope vaccine ensemble for monkeypox disease using an immunoinformatics approach. Front Immunol, 13: 1004804.

    16. Borst K, Flindt S, Blank P, Larsen PK, Chhatbar C, Skerra J, Spanier J, Hirche C, Konig M, Alanentalo T, Hafner M, Waibler Z, Pfeffer K, Sexl V, Sutter G, Muller W, Graalmann T, Kalinke U. 2020. Selective reconstitution of ifn-gamma gene function in NCR1+ NK cells is sufficient to control systemic vaccinia virus infection. PLoS Pathog, 16: e1008279.

    17. Bratke KA, McLysaght A, Rothenburg S. 2013. A survey of host range genes in poxvirus genomes. Infect Genet Evol, 14: 406-425.

    18. Brockhurst MA, Chapman T, King KC, Mank JE, Paterson S, Hurst GD. 2014. Running with the red queen: The role of biotic conflicts in evolution. Proc Biol Sci, 281, 20141382.

    19. Brown K, Leggat PA. 2016. Human monkeypox: Current state of knowledge and implications for the future. Trop Med Infect Dis, 1, 8.

    20. Bunge EM, Hoet B, Chen L, Lienert F, Weidenthaler H, Baer LR, Steffen R. 2022. The changing epidemiology of human monkeypox-a potential threat? A systematic review. PLoS Negl Trop Dis, 16: e0010141.

    21. Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H, Planyavsky M, Bilban M, Colinge J, Bennett KL, Superti-Furga G. 2009. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol, 10: 266-272.

    22. Byun M, Verweij MC, Pickup DJ, Wiertz EJ, Hansen TH, Yokoyama WM. 2009. Two mechanistically distinct immune evasion proteins of cowpox virus combine to avoid antiviral CD8 T cells. Cell Host Microbe, 6: 422-432.

    23. Casey CG, Iskander JK, Roper MH, Mast EE, Wen XJ, Torok TJ, Chapman LE, Swerdlow DL, Morgan J, Heffelfinger JD, Vitek C, Reef SE, Hasbrouck LM, Damon I, Neff L, Vellozzi C, McCauley M, Strikas RA, Mootrey G. 2005. Adverse events associated with smallpox vaccination in the united states, January-October 2003. JAMA, 294: 2734-2743.

    24. Chen X, Xu X, Chen Y, Cheung JC, Wang H, Jiang J, de Val N, Fox T, Gellert M, Yang W. 2021. Structure of an activated DNA-PK and its implications for nhej. Mol Cell, 81: 801-810 e803.

    25. Cheng WY, He XB, Jia HJ, Chen GH, Jin QW, Long ZL, Jing ZZ. 2018. The cgas-sting signaling pathway is required for the innate immune response against ectromelia virus. Front Immunol, 9: 1297.

    26. China CDC. 2023. Monitoring of monkeypox epidemic 2023. Https://www.Chinacdc.Cn/jkzt/crb/zl/szkb_13037/gnyq/(Accessed 15 July 2024, in Chinese).

    27. Dai P, Wang W, Cao H, Avogadri F, Dai L, Drexler I, Joyce JA, Li XD, Chen Z, Merghoub T, Shuman S, Deng L. 2014. Modified vaccinia virus ankara triggers type I IFN production in murine conventional dendritic cells via a cGAS/STING-mediated cytosolic DNA-sensing pathway. PLoS Pathog, 10: e1003989.

    28. Desai P, Tahiliani V, Abboud G, Stanfield J, Salek-Ardakani S. 2018. Batf3-dependent dendritic cells promote optimal CD8 T cell responses against respiratory poxvirus infection. J Virol, 92, e00495-18.

    29. Domingo-Gil E, Perez-Jimenez E, Ventoso I, Najera JL, Esteban M. 2008. Expression of the E3l gene of vaccinia virus in transgenic mice decreases host resistance to vaccinia virus and leishmania major infections. J Virol, 82: 254-267.

    30. Domizio JD, Gulen MF, Saidoune F, Thacker VV, Yatim A, Sharma K, Nass T, Guenova E, Schaller M, Conrad C, Goepfert C, de Leval L, Garnier CV, Berezowska S, Dubois A, Gilliet M, Ablasser A. 2022. The cGAS-STING pathway drives type i ifn immunopathology in COVID-19. Nature, 603: 145-151.

    31. Doty JB, Malekani JM, Kalemba LN, Stanley WT, Monroe BP, Nakazawa YU, Mauldin MR, Bakambana TL, Liyandja Dja Liyandja T, Braden ZH, Wallace RM, Malekani DV, McCollum AM, Gallardo-Romero N, Kondas A, Peterson AT, Osorio JE, Rocke TE, Karem KL, Emerson GL, Carroll DS. 2017. Assessing monkeypox virus prevalence in small mammals at the human-animal interface in the Democratic Republic of the Congo. Viruses, 9, 283.

    32. Dunphy G, Flannery SM, Almine JF, Connolly DJ, Paulus C, Jonsson KL, Jakobsen MR, Nevels MM, Bowie AG, Unterholzner L. 2018. Non-canonical activation of the DNA sensing adaptor sting by atm and IFI16 mediates NF-kappaB signaling after nuclear DNA damage. Mol Cell, 71: 745-760 e745.

    33. Dyall J, Johnson RF, Chefer S, Leyson C, Thomasson D, Seidel J, Ragland DR, Byrum R, Jett C, Cann JA, St Claire M, Jagoda E, Reba RC, Hammoud D, Blaney JE, Jahrling PB. 2017. [(18)f]-fluorodeoxyglucose uptake in lymphoid tissue serves as a predictor of disease outcome in the nonhuman primate model of monkeypox virus infection. J Virol, 91, e00897-17.

    34. Earl PL, Americo JL, Moss B. 2012. Lethal monkeypox virus infection of CAST/EiJ mice is associated with a deficient gamma interferon response. J Virol, 86: 9105-9112.

    35. Earl PL, Americo JL, Moss B. 2017. Insufficient innate immunity contributes to the susceptibility of the castaneous mouse to orthopoxvirus infection. J Virol, 91, e01042-17.

    36. Earl PL, Americo JL, Moss B. 2020. Natural killer cells expanded in vivo or ex vivo with IL-15 overcomes the inherent susceptibility of cast mice to lethal infection with orthopoxviruses. PLoS Pathog, 16: e1008505.

    37. Edghill-Smith Y, Bray M, Whitehouse CA, Miller D, Mucker E, Manischewitz J, King LR, Robert-Guroff M, Hryniewicz A, Venzon D, Meseda C, Weir J, Nalca A, Livingston V, Wells J, Lewis MG, Huggins J, Zwiers SH, Golding H, Franchini G. 2005. Smallpox vaccine does not protect macaques with aids from a lethal monkeypox virus challenge. J Infect Dis, 191: 372-381.

    38. Elde NC, Child SJ, Eickbush MT, Kitzman JO, Rogers KS, Shendure J, Geballe AP, Malik HS. 2012. Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. Cell, 150: 831-841.

    39. Endo A, Jung SM, Miura F. 2023. Mpox emergence in Japan: Ongoing risk of establishment in asia. Lancet, 401: 1923-1924.

    40. Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. 2016. CD28 costimulation: From mechanism to therapy. Immunity, 44: 973-988.

    41. Esteban DJ, Buller RM. 2004. Identification of residues in an orthopoxvirus interleukin-18 binding protein involved in ligand binding and species specificity. Virology, 323: 197-207.

    42. Estep RD, Messaoudi I, O'Connor MA, Li H, Sprague J, Barron A, Engelmann F, Yen B, Powers MF, Jones JM, Robinson BA, Orzechowska BU, Manoharan M, Legasse A, Planer S, Wilk J, Axthelm MK, Wong SW. 2011. Deletion of the monkeypox virus inhibitor of complement enzymes locus impacts the adaptive immune response to monkeypox virus in a nonhuman primate model of infection. J Virol, 85: 9527-9542.

    43. Feraoun Y, Palgen JL, Joly C, Tchitchek N, Marcos-Lopez E, Dereuddre-Bosquet N, Gallouet AS, Contreras V, Levy Y, Martinon F, Le Grand R, Beignon AS. 2021. The route of vaccine administration determines whether blood neutrophils undergo long-term phenotypic modifications. Front Immunol, 12: 784813.

    44. Ferguson BJ, Mansur DS, Peters NE, Ren H, Smith GL. 2012. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. Elife, 1: e00047.

    45. Ferguson SE, Han S, Kelsoe G, Thompson CB. 1996. CD28 is required for germinal center formation. J Immunol, 156: 4576-4581.

    46. Freud AG, Caligiuri MA. 2006. Human natural killer cell development. Immunol Rev, 214: 56-72.

    47. Froggatt GC, Smith GL, Beard PM. 2007. Vaccinia virus gene F3L encodes an intracellular protein that affects the innate immune response. J Gen Virol, 88: 1917-1921.

    48. Gilchuk I, Gilchuk P, Sapparapu G, Lampley R, Singh V, Kose N, Blum DL, Hughes LJ, Satheshkumar PS, Townsend MB, Kondas AV, Reed Z, Weiner Z, Olson VA, Hammarlund E, Raue HP, Slifka MK, Slaughter JC, Graham BS, Edwards KM, Eisenberg RJ, Cohen GH, Joyce S, Crowe JE, Jr. 2016. Cross-neutralizing and protective human antibody specificities to poxvirus infections. Cell, 167: 684-694 e689.

    49. Gong Q, Wang C, Chuai X, Chiu S. 2022. Monkeypox virus: A re-emergent threat to humans. Virol Sin, 37: 477-482.

    50. Gu Y, Ren R, Han J, Bai W, Zhang Y, Liu H, Li Z, Li C, Song R, Zhou L. 2024. Knowledge, attitude, and practice towards mpox and associated factors among hiv-infected individuals - beijing municipality, china, 2023. China CDC Wkly, 6: 109-117.

    51. Gui X, Yang H, Li T, Tan X, Shi P, Li M, Du F, Chen ZJ. 2019. Autophagy induction via sting trafficking is a primordial function of the cGAS pathway. Nature, 567: 262-266.

    52. Hammarlund E, Dasgupta A, Pinilla C, Norori P, Fruh K, Slifka MK. 2008. Monkeypox virus evades antiviral CD4+ and CD8+ t cell responses by suppressing cognate T cell activation. Proc Natl Acad Sci U S A, 105: 14567-14572.

    53. Harvey IB, Wang X, Fremont DH. 2019. Molluscum contagiosum virus MC80 sabotages MHC-I antigen presentation by targeting tapasin for ER-associated degradation. PLoS Pathog, 15: e1007711.

    54. Hatch GJ, Graham VA, Bewley KR, Tree JA, Dennis M, Taylor I, Funnell SG, Bate SR, Steeds K, Tipton T, Bean T, Hudson L, Atkinson DJ, McLuckie G, Charlwood M, Roberts AD, Vipond J. 2013. Assessment of the protective effect of imvamune and Acam2000 vaccines against aerosolized monkeypox virus in cynomolgus macaques. J Virol, 87: 7805-7815.

    55. Hobbs SJ, Harbour JC, Yates PA, Ortiz D, Landfear SM, Nolz JC. 2020. Vaccinia virus vectors targeting peptides for MHC class II presentation to CD4(+) T cells. Immunohorizons, 4: 1-13.

    56. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature, 458: 514-518.

    57. Hou F, Zhang Y, Liu X, Murad YM, Xu J, Yu Z, Hua X, Song Y, Ding J, Huang H, Zhao R, Jia W, Yang X. 2023. mRNA vaccines encoding fusion proteins of monkeypox virus antigens protect mice from vaccinia virus challenge. Nat Commun, 14: 5925.

    58. Hraib M, Jouni S, Albitar MM, Alaidi S, Alshehabi Z. 2022. The outbreak of monkeypox 2022: An overview. Ann Med Surg (Lond), 79: 104069.

    59. Hudson PN, Self J, Weiss S, Braden Z, Xiao Y, Girgis NM, Emerson G, Hughes C, Sammons SA, Isaacs SN, Damon IK, Olson VA. 2012. Elucidating the role of the complement control protein in monkeypox pathogenicity. PLoS One, 7: e35086.

    60. Huhn GD, Bauer AM, Yorita K, Graham MB, Sejvar J, Likos A, Damon IK, Reynolds MG, Kuehnert MJ. 2005. Clinical characteristics of human monkeypox, and risk factors for severe disease. Clin Infect Dis, 41: 1742-1751.

    61. Islam MS, Rahman A, Rahman MT. 2023. Mpox is still being neglected in South-East Asia region: Possible challenges to control. New Microbes New Infect, 52: 101109.

    62. Ivashkiv LB, Donlin LT. 2014. Regulation of type I interferon responses. Nat Rev Immunol, 14: 36-49.

    63. Jha P, Kotwal GJ. 2003. Vaccinia complement control protein: Multi-functional protein and a potential wonder drug. J Biosci, 28: 265-271.

    64. Jia L, Jia H, Fang Y, Yan B, Zhang M, Zhang Y, Wang W, Guo C, Huang X, Zhang T, Jiang T. 2024. A case of acute HIV-1 and monkeypox coinfection after condomless insertive anal sex in the previous 69 days - Beijing municipality, China, August-October, 2023. China CDC Wkly, 6: 126-130.

    65. Jia L, Yan B, Fang Y, Yang X, Jia H, Zhang M, Li S, Zhang Y, Wang W, Guo C, Zhang T, Huang X, Jiang T. 2023. Cases of monkeypox show highly-overlapping co-infection with HIV and syphilis. Front Public Health, 11: 1276821.

    66. Kindrachuk J, Arsenault R, Kusalik A, Kindrachuk KN, Trost B, Napper S, Jahrling PB, Blaney JE. 2012. Systems kinomics demonstrates congo basin monkeypox virus infection selectively modulates host cell signaling responses as compared to west african monkeypox virus. Mol Cell Proteomics, 11: M111 015701.

    67. Kleinpeter P, Remy-Ziller C, Winter E, Gantzer M, Nourtier V, Kempf J, Hortelano J, Schmitt D, Schultz H, Geist M, Brua C, Hoffmann C, Schlesinger Y, Villeval D, Thioudellet C, Erbs P, Foloppe J, Silvestre N, Fend L, Quemeneur E, Marchand JB. 2019. By binding CD80 and CD86, the vaccinia virus M2 protein blocks their interactions with both CD28 and CTLA4 and potentiates CD80 binding to PD-L1. J Virol, 93, e00207-e00219.

    68. Kottkamp AC, Samanovic MI, Duerr R, Oom AL, Belli HM, Zucker JR, Rosen JB, Mulligan MJ, Group NOS. 2023. Antibody titers against mpox virus after vaccination. N Engl J Med, 389: 2299-2301.

    69. Kumar R, Nagar S, Haider S, Sood U, Ponnusamy K, Dhingra GG, Anand S, Dua A, Singh M, Kumar R, Sengar M, Singh IK, Lal R. 2023. Monkeypox virus: Phylogenomics, host-pathogen interactome and mutational cascade. Microb Genom, 9, mgen000987.

    70. Langland JO, Jacobs BL. 2004. Inhibition of PKR by vaccinia virus: Role of the N- and C-terminal domains of E3l. Virology, 324: 419-429.

    71. Li H, Huang QZ, Zhang H, Liu ZX, Chen XH, Ye LL, Luo Y. 2023. The land-scape of immune response to monkeypox virus. EBioMedicine, 87: 104424.

    72. Li X, Liu C, Mao Z, Xiao M, Wang L, Qi S, Zhou F. 2020. Predictive values of neutrophil-to-lymphocyte ratio on disease severity and mortality in COVID-19 patients: A systematic review and meta-analysis. Crit Care, 24: 647.

    73. Ling M, Murali M. 2019. Analysis of the complement system in the clinical immunology laboratory. Clin Lab Med, 39: 579-590.

    74. Linterman MA, Vinuesa CG. 2010. Signals that influence T follicular helper cell differentiation and function. Semin Immunopathol, 32: 183-196.

    75. Liszewski MK, Leung MK, Hauhart R, Buller RM, Bertram P, Wang X, Rosengard AM, Kotwal GJ, Atkinson JP. 2006. Structure and regulatory profile of the monkeypox inhibitor of complement: Comparison to homologs in vaccinia and variola and evidence for dimer formation. J Immunol, 176: 3725-3734.

    76. Liu N, Pang X, Zhang H, Ji P. 2021. The cGAS-STING pathway in bacterial infection and bacterial immunity. Front Immunol, 12: 814709.

    77. Lu J, Xing H, Wang C, Tang M, Wu C, Ye F, Yin L, Yang Y, Tan W, Shen L. 2023. Mpox (formerly monkeypox): Pathogenesis, prevention, and treatment. Signal Transduct Target Ther, 8: 458.

    78. Lu Y, Zhang L. 2020. DNA-sensing antiviral innate immunity in poxvirus infection. Front Immunol, 11: 1637.

    79. Ma B, Kang MJ, Lee CG, Chapoval S, Liu W, Chen Q, Coyle AJ, Lora JM, Picarella D, Homer RJ, Elias JA. 2005. Role of CCR5 in IFN-gamma-induced and cigarette smoke-induced emphysema. J Clin Invest, 115: 3460-3472.

    80. Ma S, Ge J, Qin L, Chen X, Du L, Qi Y, Bai L, Han Y, Xie Z, Chen J, Jia Y. 2024. Spatiotemporal epidemiological trends of mpox in mainland China: Spatiotemporal ecological comparison study. JMIR Public Health Surveill, 10: e57807.

    81. McKenzie R, Kotwal GJ, Moss B, Hammer CH, Frank MM. 1992. Regulation of complement activity by vaccinia virus complement-control protein. J Infect Dis, 166: 1245-1250.

    82. Meyer H, Ehmann R, Smith GL. 2020. Smallpox in the post-eradication era. Viruses, 12, 138.

    83. Minculescu L, Sengelov H, Marquart HV, Ryder LP, Fischer-Nielsen A, Haastrup E. 2021. Granulocyte colony-stimulating factor effectively mobilizes TCR gammadelta and NK cells providing an allograft potentially enhanced for the graft-versus-leukemia effect for allogeneic stem cell transplantation. Front Immunol, 12: 625165.

    84. Mitja O, Alemany A, Marks M, Lezama Mora JI, Rodriguez-Aldama JC, Torres Silva MS, Corral Herrera EA, Crabtree-Ramirez B, Blanco JL, Girometti N, Mazzotta V, Hazra A, Silva M, Montenegro-Idrogo JJ, Gebo K, Ghosn J, Pena Vazquez MF, Matos Prado E, Unigwe U, Villar-Garcia J, Wald-Dickler N, Zucker J, Paredes R, Calmy A, Waters L, Galvan-Casas C, Walmsley S, Orkin CM, group S-Nw. 2023. Mpox in people with advanced hiv infection: A global case series. Lancet, 401: 939-949.

    85. Mohan K, Ding Z, Hanly J, Issekutz TB. 2002. IFN-gamma-inducible T cell alpha chemoattractant is a potent stimulator of normal human blood T lymphocyte transendothelial migration: Differential regulation by IFN-gamma and TNF-alpha. J Immunol, 168: 6420-6428.

    86. Molteni C, Forni D, Cagliani R, Mozzi A, Clerici M, Sironi M. 2022. Evolution of the orthopoxvirus core genome. Virus Res, 323: 198975.

    87. Oberlies J, Watzl C, Giese T, Luckner C, Kropf P, Muller I, Ho AD, Munder M. 2009. Regulation of NK cell function by human granulocyte arginase. J Immunol, 182: 5259-5267.

    88. Papukashvili D, Rcheulishvili N, Liu C, Wang X, He Y, Wang PG. 2022. Strategy of developing nucleic acid-based universal monkeypox vaccine candidates. Front Immunol, 13: 1050309.

    89. Park C, Peng C, Brennan G, Rothenburg S. 2019. Species-specific inhibition of antiviral protein kinase R by capripoxviruses and vaccinia virus. Ann N Y Acad Sci, 1438: 18-29.

    90. Park C, Peng C, Rahman MJ, Haller SL, Tazi L, Brennan G, Rothenburg S. 2021. Orthopoxvirus K3 orthologs show virus- and host-specific inhibition of the antiviral protein kinase PKR. PLoS Pathog, 17: e1009183.

    91. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL. 2005. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol, 25: 9543-9553.

    92. Pentcheva-Hoang T, Egen JG, Wojnoonski K, Allison JP. 2004. B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity, 21: 401-413.

    93. Perdiguero B, Esteban M. 2009. The interferon system and vaccinia virus evasion mechanisms. J Interferon Cytokine Res, 29: 581-598.

    94. Peters NE, Ferguson BJ, Mazzon M, Fahy AS, Krysztofinska E, Arribas-Bosacoma R, Pearl LH, Ren H, Smith GL. 2013. A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus. PLoS Pathog, 9: e1003649.

    95. Qin Y, Li M, Zhou SL, Yin W, Bian Z, Shu HB. 2017. SPI-2/CrmA inhibits IFN-β induction by targeting TBK1/IKKε. Sci Rep, 7: 10495.

    96. Quatrini L, Della Chiesa M, Sivori S, Mingari MC, Pende D, Moretta L. 2021. Human NK cells, their receptors and function. Eur J Immunol, 51: 1566-1579.

    97. Rahman MM, McFadden G. 2022. Role of cytokines in poxvirus host tropism and adaptation. Curr Opin Virol, 57: 101286.

    98. Rao AK, Petersen BW, Whitehill F, Razeq JH, Isaacs SN, Merchlinsky MJ, Campos-Outcalt D, Morgan RL, Damon I, Sanchez PJ, Bell BP. 2022. Use of JYNNEOS (smallpox and monkeypox vaccine, live, nonreplicating) for preexposure vaccination of persons at risk for occupational exposure to orthopoxviruses: Recommendations of the advisory committee on immunization practices - United States, 2022. MMWR Morb Mortal Wkly Rep, 71: 734-742.

    99. Rastogi I, Jeon D, Moseman JE, Muralidhar A, Potluri HK, McNeel DG. 2022. Role of B cells as antigen presenting cells. Front Immunol, 13: 954936.

    100. Reading PC, Smith GL. 2003. Vaccinia virus interleukin-18-binding protein promotes virulence by reducing gamma interferon production and natural killer and T-cell activity. J Virol, 77: 9960-9968.

    101. Reed KD, Melski JW, Graham MB, Regnery RL, Sotir MJ, Wegner MV, Kazmierczak JJ, Stratman EJ, Li Y, Fairley JA, Swain GR, Olson VA, Sargent EK, Kehl SC, Frace MA, Kline R, Foldy SL, Davis JP, Damon IK. 2004. The detection of monkeypox in humans in the western hemisphere. N Engl J Med, 350: 342-350.

    102. Reeves RK, Gillis J, Wong FE, Yu Y, Connole M, Johnson RP. 2010. CD16- natural killer cells: Enrichment in mucosal and secondary lymphoid tissues and altered function during chronic siv infection. Blood, 115: 4439-4446.

    103. Rehm KE, Connor RF, Jones GJ, Yimbu K, Mannie MD, Roper RL. 2009. Vaccinia virus decreases major histocompatibility complex (MHC) class II antigen presentation, T-cell priming, and peptide association with MHC class II. Immunology, 128: 381-392.

    104. Rimoin AW, Mulembakani PM, Johnston SC, Lloyd Smith JO, Kisalu NK, Kinkela TL, Blumberg S, Thomassen HA, Pike BL, Fair JN, Wolfe ND, Shongo RL, Graham BS, Formenty P, Okitolonda E, Hensley LE, Meyer H, Wright LL, Muyembe JJ. 2010. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc Natl Acad Sci U S A, 107: 16262-16267.

    105. Rothenburg S, Seo EJ, Gibbs JS, Dever TE, Dittmar K. 2009. Rapid evolution of protein kinase PKR alters sensitivity to viral inhibitors. Nat Struct Mol Biol, 16: 63-70.

    106. Ryckeley C, Goodwin G, Alvarez-Calderon A. 2023. The reemerging condition of vaccinia: A case report and brief review of monkeypox and vaccinia vaccines. Am J Case Rep, 24: e941006.

    107. Salek-Ardakani S, Arens R, Flynn R, Sette A, Schoenberger SP, Croft M. 2009. Preferential use of B7.2 and not B7.1 in priming of vaccinia virus-specific CD8 T cells. J Immunol, 182: 2909-2918.

    108. Samuel CE. 2001. Antiviral actions of interferons. Clin Microbiol Rev, 14: 778-809.

    109. Sang Y, Zhang Z, Liu F, Lu H, Yu C, Sun H, Long J, Cao Y, Mai J, Miao Y, Wang X, Fang J, Wang Y, Huang W, Yang J, Wang S. 2023. Monkeypox virus quadrivalent mrna vaccine induces immune response and protects against vaccinia virus. Signal Transduct Target Ther, 8: 172.

    110. Sarker S, Isberg SR, Moran JL, Araujo R, Elliott N, Melville L, Beddoe T, Helbig KJ. 2019. Crocodilepox virus evolutionary genomics supports observed poxvirus infection dynamics on saltwater crocodile (Crocodylus Porosus). Viruses, 11, 1116.

    111. Scutts SR, Ember SW, Ren H, Ye C, Lovejoy CA, Mazzon M, Veyer DL, Sumner RP, Smith GL. 2018. DNA-PK is targeted by multiple vaccinia virus proteins to inhibit DNA sensing. Cell Rep, 25: 1953-1965 e1954.

    112. Shchelkunov SN, Totmenin AV, Babkin IV, Safronov PF, Ryazankina OI, Petrov NA, Gutorov VV, Uvarova EA, Mikheev MV, Sisler JR, Esposito JJ, Jahrling PB, Moss B, Sandakhchiev LS. 2001. Human monkeypox and smallpox viruses: Genomic comparison. FEBS Lett, 509: 66-70.

    113. Silva Gomes JA, de Araujo FF, de Souza Trindade G, Quinan BR, Drumond BP, Ferreira JM, Mota BE, Nogueira ML, Kroon EG, Santos Abrahao J, Correa-Oliveira R, da Fonseca FG. 2012. Immune modulation in primary vaccinia virus zoonotic human infections. Clin Dev Immunol, 2012: 974067.

    114. Smith GL. 1999. Vaccinia virus immune evasion. Immunol Lett, 65: 55-62.

    115. Smith JG, Nemerow GR. 2019. Complement seals a virus to block infection. Cell Host Microbe, 25: 482-483.

    116. Sokac M, Ahrenfeldt J, Litchfield K, Watkins TBK, Knudsen M, Dyrskjot L, Jakobsen MR, Birkbak NJ. 2022. Classifying cGAS-STING activity links chromosomal instability with immunotherapy response in metastatic bladder cancer. Cancer Res Commun, 2: 762-771.

    117. Song H, Josleyn N, Janosko K, Skinner J, Reeves RK, Cohen M, Jett C, Johnson R, Blaney JE, Bollinger L, Jennings G, Jahrling PB. 2013. Monkeypox virus infection of rhesus macaques induces massive expansion of natural killer cells but suppresses natural killer cell functions. PLoS One, 8: e77804.

    118. Su B, Dou D, Fang D. 2022 December. Current status, challenge and prospect of monkeypox epidemic. Chinese J Exp Clin Virol, 36, 712-718.

    119. Szeto C, Lobos CA, Nguyen AT, Gras S. 2020. TCR recognition of peptide-MHC-I: Rule makers and breakers. Int J Mol Sci, 22, 68.

    120. Taga M, Ikeda M, Shigeta H, Hiraga M. 1999. Gene expression of double-stranded rna-dependent protein kinase in the human endometrium and decidua. Mol Cell Endocrinol, 158: 65-68.

    121. Tang D, Liu X, Lu J, Fan H, Xu X, Sun K, Wang R, Li C, Dan D, Du H, Wang Z, Li X, Yang X. 2023. Recombinant proteins A29L, M1R, A35R, and B6R vaccination protects mice from mpox virus challenge. Front Immunol, 14: 1203410.

    122. Tang Y, Shi G, Yang J, Zheng W, Tang J, Chen XZ, Yang J, Wang Z. 2019. Role of PKR in the inhibition of proliferation and translation by polycystin-1. Biomed Res Int, 2019: 5320747.

    123. Thacore HR, Youngner JS. 1973. Rescue of vesicular stomatitis virus from interferon-induced resistance by superinfection with vaccinia virus. I. Rescue in cell cultures from different species. Virology, 56: 505-511.

    124. Ukhueduan B, Chukwurah E, Patel RC. 2021. Regulation of pkr activation and apoptosis during oxidative stress by trbp phosphorylation. Int J Biochem Cell Biol, 137: 106030.

    125. Vanderplasschen A, Mathew E, Hollinshead M, Sim RB, Smith GL. 1998. Extracellular enveloped vaccinia virus is resistant to complement because of incorporation of host complement control proteins into its envelope. Proc Natl Acad Sci U S A, 95: 7544-7549.

    126. Wang X, Gu Z, Sheng S, Song R, Jin R. 2024. The current state and progress of mpox vaccine research. China CDC Wkly, 6: 118-125.

    127. Watson JC, Chang HW, Jacobs BL. 1991. Characterization of a vaccinia virus-encoded double-stranded rna-binding protein that may be involved in inhibition of the double-stranded rna-dependent protein kinase. Virology, 185: 206-216.

    128. White SD, Jacobs BL. 2012. The amino terminus of the vaccinia virus E3 protein is necessary to inhibit the interferon response. J Virol, 86: 5895-5904.

    129. WHO. 2023. Multi-country outbreak of mpox. Https://www.Who.Int/publications/m/item/multi-country-outbreak-of-mpox--external-situation-report-31---22-december-2023 (Accessed 15 July 2024).

    130. Xiang Y, Moss B. 1999. IL-18 binding and inhibition of interferon gamma induction by human poxvirus-encoded proteins. Proc Natl Acad Sci U S A, 96: 11537-11542.

    131. Xiao Y, Aldaz-Carroll L, Ortiz AM, Whitbeck JC, Alexander E, Lou H, Davis HL, Braciale TJ, Eisenberg RJ, Cohen GH, Isaacs SN. 2007. A protein-based smallpox vaccine protects mice from vaccinia and ectromelia virus challenges when given as a prime and single boost. Vaccine, 25: 1214-1224.

    132. Yang N, Luna JM, Dai P, Wang Y, Rice CM, Deng L. 2022. Lung type II alveolar epithelial cells collaborate with CCR2(+) inflammatory monocytes in host defense against poxvirus infection. Nat Commun, 13: 1671.

    133. Yang S, Wang Y, Yu F, Cheng R, Zhang Y, Zhou D, Ren X, Deng Z, Zhao H. 2023. Structural and functional insights into the modulation of T cell costimulation by monkeypox virus protein M2. Nat Commun, 14: 5186.

    134. Yin L, Scott-Browne J, Kappler JW, Gapin L, Marrack P. 2012. T cells and their eons-old obsession with MHC. Immunol Rev, 250: 49-60.

    135. Yin X, Liu M, Tian Y, Wang J, Xu Y. 2017. Cryo-EM structure of human DNA-PK holoenzyme. Cell Res, 27: 1341-1350.

  • 加载中

Figures(1)

Article Metrics

Article views(868) PDF downloads(22) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    The unique immune evasion mechanisms of the mpox virus and their implication for developing new vaccines and immunotherapies

      Corresponding author: Bin Su, binsu@ccmu.edu.cn
    • a. Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China;
    • b. Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China;
    • c. Central Laboratory, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China

    Abstract: Mpox is an infectious and contagious zoonotic disease caused by the mpox virus (MPXV), which belongs to the genus Orthopoxvirus. Since 2022, MPXV has posed a significant threat to global public health. The emergence of thousands of cases across the Western Hemisphere prompted the World Health Organization to declare an emergency. The extensive coevolutionary history of poxviruses with humans has enabled these viruses to develop sophisticated mechanisms to counter the human immune system. Specifically, MPXV employs unique immune evasion strategies against a wide range of immunological elements, presenting a considerable challenge for treatment, especially following the discontinuation of routine smallpox vaccination among the general population. In this review, we start by discussing the entry of the mpox virus and the onset of early infection, followed by an introduction to the mechanisms by which the mpox virus can evade the innate and adaptive immune responses. Two caspase-1 inhibitory proteins and a PKR escape-related protein have been identified as phylogenomic hubs involved in modulating the immune environment during the MPXV infection. With respect to adaptive immunity, mpox viruses exhibit unique and exceptional T-cell inhibition capabilities, thereby comprehensively remodeling the host immune environment. The viral envelope also poses challenges for the neutralizing effects of antibodies and the complement system. The unique immune evasion mechanisms employed by MPXV make novel multi-epitope and nucleic acid-based vaccines highly promising research directions worth investigating. Finally, we briefly discuss the impact of MPXV infection on immunosuppressed patients and the current status of MPXV vaccine development. This review may provide valuable information for the development of new immunological treatments for mpox.

    Figure (1)  Reference (135) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return