. doi: 10.1016/j.virs.2024.09.001
Citation: Lihong Huang, Lele Liu, Junhai Zhu, Nanjun Chen, Jie Chen, Chuen-Fuk Chan, Fei Gao, Youqin Yin, Jiufeng Sun, Rongxin Zhang, Kehui Zhang, Wenbao Qi, Jianbo Yue. Bis-benzylisoquinoline alkaloids inhibit flavivirus entry and replication by compromising endolysosomal trafficking and autophagy .VIROLOGICA SINICA, 2024, 39(6) : 892-908.  http://dx.doi.org/10.1016/j.virs.2024.09.001

双苄基异喹啉生物碱通过影响内体溶酶体转运和自噬来抑制黄病毒的进入和复制

cstr: 32224.14.j.virs.2024.09.001
  • 黄病毒,如登革热病毒(DENV)、寨卡病毒(ZIKV)和日本脑炎病毒(JEV),因目前仍没有批准的治疗方法,给公共卫生带来了极大的挑战。本文研究了双苄基异喹啉生物碱抗黄病毒感染的能力。我们发现5种特异的双苄基异喹啉生物碱(盐酸小檗胺、粉防己碱、异粉防己碱、防己诺林碱、千金藤素)通过阻断病毒进入和基因组复制阶段从而有效抑制ZIKV、DENV以及JEV的感染。此外,我们合成了一种荧光基团偶联的双苄基异喹啉生物碱,并发现其可靶向并碱化内体溶酶体。机制研究表明,这些化合物通过阻断TRPML通道,导致溶酶体功能障碍,从而降低NCAM1(NCAM1是ZIKV进入细胞的关键受体)的表达,从而降低细胞对ZIKV的易感性。此外,双苄基异喹啉生物碱还通过抑制自噬小体与溶酶体的融合从而降低病毒RNA的复制。总之,我们的研究结果表明,双苄基异喹啉生物碱分别通过影响内体溶酶体转运和自噬来抑制黄病毒的进入和复制。这一结果突出了双苄基异喹啉生物碱作为抗黄病毒感染治疗剂的潜力。

Bis-benzylisoquinoline alkaloids inhibit flavivirus entry and replication by compromising endolysosomal trafficking and autophagy

  • Flaviviruses, such as dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV), represent a substantial public health challenge as there are currently no approved treatments available. Here, we investigated the antiviral effects of bis-benzylisoquinoline alkaloids (BBAs) on flavivirus infections. We evaluated five specific BBAs—berbamine, tetrandrine, iso-tetrandrine, fangchinoline, and cepharanthine—and found that they effectively inhibited infections by ZIKV, DENV, or JEV by blocking virus entry and genome replication stages in the flavivirus life cycle. Furthermore, we synthesized a fluorophore-conjugated BBA and showed that BBAs targeted endolysosomes, causing lysosomal pH alkalization. Mechanistic studies on inhibiting ZIKV infection by BBAs revealed that these compounds blocked TRPML channels, leading to lysosomal dysfunction and reducing the expression of NCAM1, a key receptor for the entry of ZIKV into cells, thereby decreasing cells susceptibility to ZIKV infection. Additionally, BBAs inhibited the fusion of autophagosomes and lysosomes, significantly reducing viral RNA replication. Collectively, our results suggest that BBAs inhibit flavivirus entry and replication by compromising endolysosomal trafficking and autophagy, respectively, underscoring the potential of BBAs as therapeutic agents against flavivirus infections.

  • 加载中
    1. Acosta-Perez, T., Rodriguez-Yanez, T., Almanza-Hurtado, A., Martinez-Avila, M.C., Duenas-Castell, C., 2022. Dynamics of dengue and SARS-COV-2 co-infection in an endemic area of Colombia. Trop Dis Travel Med Vaccines 8, 12.

    2. Adamson, C.S., Chibale, K., Goss, R.J.M., Jaspars, M., Newman, D.J., Dorrington, R.A., 2021. Antiviral drug discovery: preparing for the next pandemic. Chem Soc Rev 50, 3647-3655.

    3. Bekerman, E., Einav, S., 2015. Infectious disease. Combating emerging viral threats. Science 348, 282-283.

    4. Bhagya, N., Chandrashekar, K.R., 2016. Tetrandrine--A molecule of wide bioactivity. Phytochemistry 125, 5-13.

    5. Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O., Myers, M.F., George, D.B., Jaenisch, T., Wint, G.R., Simmons, C.P., Scott, T.W., Farrar, J.J., Hay, S.I., 2013. The global distribution and burden of dengue. Nature 496, 504-507.

    6. Bifani, A.M., Chan, K.W.K., Borrenberghs, D., Tan, M.J.A., Phoo, W.W., Watanabe, S., Goethals, O., Vasudevan, S.G., Choy, M.M., 2023. Therapeutics for flaviviral infections. Antiviral Res 210, 105517.

    7. Campbell, G.L., Hills, S.L., Fischer, M., Jacobson, J.A., Hoke, C.H., Hombach, J.M., Marfin, A.A., Solomon, T., Tsai, T.F., Tsu, V.D., Ginsburg, A.S., 2011. Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ 89, 766-774, 774a-774e.

    8. Cao, B., Parnell, L.A., Diamond, M.S., Mysorekar, I.U., 2017. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J Exp Med 214, 2303-2313.

    9. Chang, G.J., Kuno, G., Purdy, D.E., Davis, B.S., 2004. Recent advancement in flavivirus vaccine development. Expert Rev Vaccines 3, 199-220.

    10. Chiramel, A.I., Best, S.M., 2018. Role of autophagy in Zika virus infection and pathogenesis. Virus Res 254, 34-40.

    11. Christensen, K.A., Myers, J.T., Swanson, J.A., 2002. pH-dependent regulation of lysosomal calcium in macrophages. J Cell Sci 115, 599-607.

    12. Christofferson, R.C., 2015. A Reevaluation of the Role of Aedes albopictus in Dengue Transmission. J Infect Dis 212, 1177-1179.

    13. Cloherty, A.P.M., Rader, A.G., Patel, K.S., Perez-Vargas, J., Thompson, C.A.H., Ennis, S., Niikura, M., Wildenberg, M.E., Muncan, V., Schreurs, R., Jean, F., Ribeiro, C.M.S., 2023. Berbamine suppresses intestinal SARS-CoV-2 infection via a BNIP3-dependent autophagy blockade. Emerg Microbes Infect 12, 2195020.

    14. Collins, M.H., Metz, S.W., 2017. Progress and Works in Progress: Update on Flavivirus Vaccine Development. Clin Ther 39, 1519-1536.

    15. Di Paola, S., Scotto-Rosato, A., Medina, D.L., 2018. TRPML1: The Ca(2+)retaker of the lysosome. Cell Calcium 69, 112-121.

    16. Dong, S., Yu, R., Wang, X., Chen, B., Si, F., Zhou, J., Xie, C., Li, Z., Zhang, D., 2022. Bis-Benzylisoquinoline Alkaloids Inhibit Porcine Epidemic Diarrhea Virus In Vitro and In Vivo. Viruses 14, 1231 .

    17. Dutta, D., Ghosh, A., Dutta, C., Sukla, S., Biswas, S., 2023. Cross-reactivity of SARS-CoV-2 with other pathogens, especially dengue virus: A historical perspective. J Med Virol 95, e28557.

    18. Fu, R., Deng, Q., Zhang, H., Hu, X., Li, Y., Liu, Y., Hu, J., Luo, Q., Zhang, Y., Jiang, X., Li, L., Yang, C., Gao, N., 2018. A novel autophagy inhibitor berbamine blocks SNARE-mediated autophagosome-lysosome fusion through upregulation of BNIP3. Cell Death Dis 9, 243.

    19. Gao, S., Li, X., Ding, X., Qi, W., Yang, Q., 2017. Cepharanthine Induces Autophagy, Apoptosis and Cell Cycle Arrest in Breast Cancer Cells. Cell Physiol Biochem 41, 1633-1648.

    20. Gerndt, S., Chen, C.C., Chao, Y.K., Yuan, Y., Burgstaller, S., Scotto Rosato, A., Krogsaeter, E., Urban, N., Jacob, K., Nguyen, O.N.P., Miller, M.T., Keller, M., Vollmar, A.M., Gudermann, T., Zierler, S., Schredelseker, J., Schaefer, M., Biel, M., Malli, R., Wahl-Schott, C., Bracher, F., Patel, S., Grimm, C., 2020. Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function. Elife 9, e54712.

    21. Gould, E.A., Solomon, T., 2008. Pathogenic flaviviruses. Lancet 371, 500-509.

    22. Guzman, M.G., Harris, E., 2015. Dengue. Lancet 385, 453-465.

    23. He, C.L., Huang, L.Y., Wang, K., Gu, C.J., Hu, J., Zhang, G.J., Xu, W., Xie, Y.H., Tang, N., Huang, A.L., 2021. Identification of bis-benzylisoquinoline alkaloids as SARS-CoV-2 entry inhibitors from a library of natural products. Signal Transduct Target Ther 6, 131.

    24. Hermann, L.L., Gupta, S.B., Manoff, S.B., Kalayanarooj, S., Gibbons, R.V., Coller, B.A., 2015. Advances in the understanding, management, and prevention of dengue. J Clin Virol 64, 153-159.

    25. Hu, S., Dutt, J., Zhao, T., Foster, C.S., 1997. Tetrandrine potently inhibits herpes simplex virus type-1-induced keratitis in BALB/c mice. Ocul Immunol Inflamm 5, 173-180.

    26. Huang, L., Fu, Q., Dai, J.M., Yan, B.C., Wang, D., Puno, P.T., Yue, J., 2021a. High-content screening of diterpenoids from Isodon species as autophagy modulators and the functional study of their antiviral activities. Cell Biol Toxicol 37, 695-713.

    27. Huang, L., Li, H., Ye, Z., Xu, Q., Fu, Q., Sun, W., Qi, W., Yue, J., 2021b. Berbamine inhibits Japanese encephalitis virus (JEV) infection by compromising TPRMLs-mediated endolysosomal trafficking of low-density lipoprotein receptor (LDLR). Emerg Microbes Infect 10, 1257-1271.

    28. Huang, L., Yuen, T.T., Ye, Z., Liu, S., Zhang, G., Chu, H., Yue, J., 2021c. Berbamine inhibits SARS-CoV-2 infection by compromising TRPMLs-mediated endolysosomal trafficking of ACE2. Signal Transduct Target Ther 6, 168.

    29. Jaslan, D., Bock, J., Krogsaeter, E., Grimm, C., 2020. Evolutionary Aspects of TRPMLs and TPCs. Int J Mol Sci 21, 4181.

    30. Junjhon, J., Edwards, T.J., Utaipat, U., Bowman, V.D., Holdaway, H.A., Zhang, W., Keelapang, P., Puttikhunt, C., Perera, R., Chipman, P.R., Kasinrerk, W., Malasit, P., Kuhn, R.J., Sittisombut, N., 2010. Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles. J Virol 84, 8353-8358.

    31. Kim, D.E., Min, J.S., Jang, M.S., Lee, J.Y., Shin, Y.S., Song, J.H., Kim, H.R., Kim, S., Jin, Y.H., Kwon, S., 2019. Natural Bis-Benzylisoquinoline Alkaloids-Tetrandrine, Fangchinoline, and Cepharanthine, Inhibit Human Coronavirus OC43 Infection of MRC-5 Human Lung Cells. Biomolecules 9, 696.

    32. Krogsaeter, E., Rosato, A.S., Grimm, C., 2022. TRPMLs and TPCs: Targets for lysosomal storage and neurodegenerative disease therapy? Cell Calcium 103, 102553.

    33. Kumazawa, Y., Kaneko, M., Inagaki, K., Matsuzaki, N., Nomoto, K., 1990. Accelerated recovery from gamma-irradiation-induced leukopenia in mice by the biscoclaurine alkaloid, Cepharanthin--comparison with recombinant human granulocyte colony-stimulating factor. Int J Immunopharmacol 12, 523-530.

    34. Li, G., De Clercq, E. 2021. Overview of Antiviral Drug Discovery and Development: Viral Versus Host Targets, In: Munoz-Fontela, C., Delgado, R. (Eds.) Antiviral Discovery for Highly Pathogenic Emerging Viruses. The Royal Society of Chemistry. doi.org/10.1039/9781788016858.

    35. Li, J., Shi, M., Liu, L., Wang, J., Zhu, M., Chen, H., 2022. Tetrandrine Inhibits Skeletal Muscle Differentiation by Blocking Autophagic Flux. Int J Mol Sci 23, 8148.

    36. Liu, X., Zhao, D., Jia, L., Xu, H., Na, R., Ge, Y., Liu, S., Yu, Y., Li, Y., 2018. Genetic and neuroattenuation phenotypic characteristics and their stabilities of SA14-14-2 vaccine seed virus. Vaccine 36, 4650-4656.

    37. Luan, F., He, X., Zeng, N., 2020. Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J Pharm Pharmacol 72, 1491-1512.

    38. Medina, D.L., 2021. Lysosomal calcium and autophagy. Int Rev Cell Mol Biol 362, 141-170.

    39. Melo, A.S., Aguiar, R.S., Amorim, M.M., Arruda, M.B., Melo, F.O., Ribeiro, S.T., Batista, A.G., Ferreira, T., Dos Santos, M.P., Sampaio, V.V., Moura, S.R., Rabello, L.P., Gonzaga, C.E., Malinger, G., Ximenes, R., de Oliveira-Szejnfeld, P.S., Tovar-Moll, F., Chimelli, L., Silveira, P.P., Delvechio, R., Higa, L., Campanati, L., Nogueira, R.M., Filippis, A.M., Szejnfeld, J., Voloch, C.M., Ferreira, O.C., Jr., Brindeiro, R.M., Tanuri, A., 2016. Congenital Zika Virus Infection: Beyond Neonatal Microcephaly. JAMA Neurol 73, 1407-1416.

    40. Miyamae, Y., Nishito, Y., Nakai, N., Nagumo, Y., Usui, T., Masuda, S., Kambe, T., Nagao, M., 2016. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line. Biochem Biophys Res Commun 477, 40-46.

    41. Mo, X., Hu, D., Yuan, K., Luo, J., Huang, C., Xu, M., 2023. Tetrandrine citrate suppresses lung adenocarcinoma growth via SLC7A11/GPX4-mediated ferroptosis. Discov Oncol 14, 85.

    42. Morita, E., Suzuki, Y., 2021. Membrane-Associated Flavivirus Replication Complex-Its Organization and Regulation. Viruses 13, 1060.

    43. Musarra-Pizzo, M., Pennisi, R., Ben-Amor, I., Mandalari, G., Sciortino, M.T., 2021. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses 13, 828.

    44. Nawawi, A., Ma, C., Nakamura, N., Hattori, M., Kurokawa, M., Shiraki, K., Kashiwaba, N., Ono, M., 1999. Anti-herpes simplex virus activity of alkaloids isolated from Stephania cepharantha. Biol Pharm Bull 22, 268-274.

    45. Owen, L., Laird, K., Shivkumar, M., 2022. Antiviral plant-derived natural products to combat RNA viruses: Targets throughout the viral life cycle. Lett Appl Microbiol 75, 476-499.

    46. Oyaizu, H., Adachi, Y., Yasumizu, R., Ono, M., Ikebukuro, K., Fukuhara, S., Ikehara, S., 2001. Protection of T cells from radiation-induced apoptosis by Cepharanthin. Int Immunopharmacol 1, 2091-2099.

    47. Patel, S., Cai, X., 2015. Evolution of acidic Ca2+ stores and their resident Ca2+-permeable channels. Cell Calcium 57, 222-230.

    48. Payne, J.T., Valentic, T.R., Smolke, C.D., 2021. Complete biosynthesis of the bisbenzylisoquinoline alkaloids guattegaumerine and berbamunine in yeast. Proc Natl Acad Sci U S A 118, e2112520118.

    49. Pierson, T.C., Diamond, M.S., 2020. The continued threat of emerging flaviviruses. Nat Microbiol 5, 796-812.

    50. Prapty, C., Rahmat, R., Araf, Y., Shounak, S.K., Noor, A.A., Rahaman, T.I., Hosen, M.J., Zheng, C., Hossain, M.G., 2023. SARS-CoV-2 and dengue virus co-infection: Epidemiology, pathogenesis, diagnosis, treatment, and management. Rev Med Virol 33, e2340.

    51. Qian, X., Qi, Z., 2022. Mosquito-Borne Flaviviruses and Current Therapeutic Advances. Viruses 14, 1226.

    52. Rivera, L., Biswal, S., Saez-Llorens, X., Reynales, H., Lopez-Medina, E., Borja-Tabora, C., Bravo, L., Sirivichayakul, C., Kosalaraksa, P., Martinez Vargas, L., Yu, D., Watanaveeradej, V., Espinoza, F., Dietze, R., Fernando, L., Wickramasinghe, P., Duarte MoreiraJr, E., Fernando, A.D., Gunasekera, D., Luz, K., Venancioda Cunha, R., Rauscher, M., Zent, O., Liu, M., Hoffman, E., LeFevre, I., Tricou, V., Wallace, D., Alera, M., Borkowski, A., 2022. Three-year Efficacy and Safety of Takeda's Dengue Vaccine Candidate (TAK-003). Clin Infect Dis 75, 107-117.

    53. Rosato, A.S., Tang, R., Grimm, C., 2021. Two-pore and TRPML cation channels: Regulators of phagocytosis, autophagy and lysosomal exocytosis. Pharmacol Ther 220, 107713.

    54. Scott, C.C., Wasnik, V., Nunes-Hassler, P., Demaurex, N., Kruse, K., Gruenberg, J., 2023. Calcium storage in multivesicular endo-lysosome. Phys Biol 20, https://doi.org/10.1088/1478-3975/acfe6a.

    55. Sharma, A., Anand, S.K., Singh, N., Dwarkanath, A., Dwivedi, U.N., Kakkar, P., 2021. Berbamine induced activation of the SIRT1/LKB1/AMPK signaling axis attenuates the development of hepatic steatosis in high-fat diet-induced NAFLD rats. Food Funct 12, 892-909.

    56. Simmons, C.P., Farrar, J.J., Nguyen v, V., Wills, B., 2012. Dengue. N Engl J Med 366, 1423-1432.

    57. Solomon, T., Dung, N.M., Kneen, R., Gainsborough, M., Vaughn, D.W., Khanh, V.T., 2000. Japanese encephalitis. J Neurol Neurosurg Psychiatry 68, 405-415.

    58. Srivastava, M., Zhang, Y., Chen, J., Sirohi, D., Miller, A., Zhang, Y., Chen, Z., Lu, H., Xu, J., Kuhn, R.J., Andy Tao, W., 2020. Chemical proteomics tracks virus entry and uncovers NCAM1 as Zika virus receptor. Nat Commun 11, 3896.

    59. Sun, P., Nie, K., Zhu, Y., Liu, Y., Wu, P., Liu, Z., Du, S., Fan, H., Chen, C.H., Zhang, R., Wang, P., Cheng, G., 2020. A mosquito salivary protein promotes flavivirus transmission by activation of autophagy. Nat Commun 11, 260.

    60. Tian, Y., Zheng, J. 2017. Chapter Six - Metabolic Activation and Toxicities of bis-Benzylisoquinoline Alkaloids, In: Fishbein, J.C., Heilman, J.M. (Eds.) Advances in Molecular Toxicology. Elsevier, 241-272.

    61. van den Elsen, K., Quek, J.P., Luo, D., 2021. Molecular Insights into the Flavivirus Replication Complex. Viruses 13, 956.

    62. van Leur, S.W., Heunis, T., Munnur, D., Sanyal, S., 2021. Pathogenesis and virulence of flavivirus infections. Virulence 12, 2814-2838.

    63. Venkatachalam, K., Hofmann, T., Montell, C., 2006. Lysosomal localization of TRPML3 depends on TRPML2 and the mucolipidosis-associated protein TRPML1. J Biol Chem 281, 17517-17527.

    64. Wan, Z., Lu, Y., Liao, Q., Wu, Y., Chen, X., 2012. Fangchinoline inhibits human immunodeficiency virus type 1 replication by interfering with gp160 proteolytic processing. PLoS One 7, e39225.

    65. Wang, Q., Guo, W., Hao, B., Shi, X., Lu, Y., Wong, C.W., Ma, V.W., Yip, T.T., Au, J.S., Hao, Q., Cheung, K.H., Wu, W., Li, G.R., Yue, J., 2016. Mechanistic study of TRPM2-Ca(2+)-CAMK2-BECN1 signaling in oxidative stress-induced autophagy inhibition. Autophagy 12, 1340-1354.

    66. Weber, C., Opatz, T., 2019. Bisbenzylisoquinoline Alkaloids. Alkaloids Chem Biol 81, 1-114.

    67. WHO Guidelines Approved by the Guidelines Review Committee, In: Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. World Health Organization. World Health Organization., Geneva. 2009.

    68. Xie, J., Ma, T., Gu, Y., Zhang, X., Qiu, X., Zhang, L., Xu, R., Yu, Y., 2009. Berbamine derivatives: a novel class of compounds for anti-leukemia activity. Eur J Med Chem 44, 3293-3298.

    69. Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M., Tashiro, Y., 1991. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266, 17707-17712.

    70. Zhang, K., Huang, L., Cai, Y., Zhong, Y., Chen, N., Gao, F., Zhang, L., Li, Q., Liu, Z., Zhang, R., Zhang, L., Yue, J., 2023. Identification of a small chemical as a lysosomal calcium mobilizer and characterization of its ability to inhibit autophagy and viral infection. Febs j 290, 5353-5372.

    71. Zhang, M., Zhong, J., Xiong, Y., Song, X., Li, C., He, Z., 2021. Development of Broad-Spectrum Antiviral Agents-Inspiration from Immunomodulatory Natural Products. Viruses 13, 1257.

    72. Zhao, X.Y., He, Z.W., Wu, D., Xu, R.Z., 2007. Berbamine selectively induces apoptosis of human acute promyelocytic leukemia cells via survivin-mediated pathway. Chin Med J (Engl) 120, 802-806.

    73. Zhou, Y.B., Wang, Y.F., Zhang, Y., Zheng, L.Y., Yang, X.A., Wang, N., Jiang, J.H., Ma, F., Yin, D.T., Sun, C.Y., Wang, Q.D., 2012. In vitro activity of cepharanthine hydrochloride against clinical wild-type and lamivudine-resistant hepatitis B virus isolates. Eur J Pharmacol 683, 10-15.

  • 加载中
  • 10.1016j.virs.2024.09.001-ESM.docx

Figures(1)

Article Metrics

Article views(448) PDF downloads(9) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Bis-benzylisoquinoline alkaloids inhibit flavivirus entry and replication by compromising endolysosomal trafficking and autophagy

      Corresponding author: Kehui Zhang, kehuizhang@imm.ac.cn
      Corresponding author: Wenbao Qi, qiwenbao@scau.edu.cn
      Corresponding author: Jianbo Yue, jianbo.yue@duke.edu
    • a. State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China;
    • b. Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China;
    • c. National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China;
    • d. Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China;
    • e. Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China;
    • f. Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China;
    • g. Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China;
    • h. Laboratory of Immunology and Inflammation, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China;
    • i. State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China;
    • j. Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China;
    • k. City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China;
    • l. Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Global Health Research Center, Duke Kunshan University, Kunshan, 215316, China;
    • m. College of Life Sciences, Wuhan University, Wuhan, 430072, China

    Abstract: Flaviviruses, such as dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV), represent a substantial public health challenge as there are currently no approved treatments available. Here, we investigated the antiviral effects of bis-benzylisoquinoline alkaloids (BBAs) on flavivirus infections. We evaluated five specific BBAs—berbamine, tetrandrine, iso-tetrandrine, fangchinoline, and cepharanthine—and found that they effectively inhibited infections by ZIKV, DENV, or JEV by blocking virus entry and genome replication stages in the flavivirus life cycle. Furthermore, we synthesized a fluorophore-conjugated BBA and showed that BBAs targeted endolysosomes, causing lysosomal pH alkalization. Mechanistic studies on inhibiting ZIKV infection by BBAs revealed that these compounds blocked TRPML channels, leading to lysosomal dysfunction and reducing the expression of NCAM1, a key receptor for the entry of ZIKV into cells, thereby decreasing cells susceptibility to ZIKV infection. Additionally, BBAs inhibited the fusion of autophagosomes and lysosomes, significantly reducing viral RNA replication. Collectively, our results suggest that BBAs inhibit flavivirus entry and replication by compromising endolysosomal trafficking and autophagy, respectively, underscoring the potential of BBAs as therapeutic agents against flavivirus infections.

    Figure (1)  Reference (73) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return