. doi: 10.1016/j.virs.2024.09.003
Citation: Jiaying Li, Jingqi Yang, Xiao Ding, Hangyu Zhou, Na Han, Aiping Wu. The spatiotemporal analysis of SARS-CoV-2 transmission in China since the termination of the dynamic zero-COVID policy .VIROLOGICA SINICA, 2024, 39(5) : 737-746.  http://dx.doi.org/10.1016/j.virs.2024.09.003

动态清零政策终止后新型冠状病毒在中国传播的时空特征分析

cstr: 32224.14.j.virs.2024.09.003
  • 通讯作者: 吴爱平, wap@ism.cams.cn
  • 收稿日期: 2024-03-02
    录用日期: 2024-09-09
  • 动态清零政策有效遏制了新冠病毒在中国的广泛传播,同时使中国人群具有免疫落差的特点。动态清零政策终止初期,与新冠病毒各谱系感染相关的新冠肺炎病例数量激增,因此,有必要探讨新冠病毒不同谱系在中国传播的流行特征。本研究基于动态清零政策终止后11个月内在中国地区采集的39,456条高质量的新冠病毒基因组序列数据,开展了病毒谱系分配、系统发育分析、谱系流行模式比较、系统动力学建模和重组识别等分析。研究发现,中国后疫情时期经历了三个主要流行谱系动态变化的阶段。地理位置相邻的地区具有相似的病毒谱系组成,表明邻近地区的跨区域合作对有效防疫的重要性。与美国、英国和日本相比,新冠病毒的主要流行谱系在中国具有独特的流行轨迹,表现出先滞后而后提前的现象,提示不同的防控政策对新冠病毒的流行模式可能产生影响。香港、上海和湖北成为新冠病毒在全国传播的关键枢纽,病毒传播中心在中国大陆地区经历了从东部到中部的转移过程。尽管在中国尚未检测到具有显著变异的新冠病毒变体,但本研究识别并验证了一个在中国新发的重组事件(XCN谱系),凸显了新冠病毒仍在持续进化的特点。综上所述,本研究系统分析了自中国动态清零政策终止后接近一年的时间里新冠病毒在中国传播的时空特征,为未来区域性疫情监测和循证公共卫生政策的制定提供了宝贵见解。

The spatiotemporal analysis of SARS-CoV-2 transmission in China since the termination of the dynamic zero-COVID policy

  • Corresponding author: Aiping Wu, wap@ism.cams.cn
  • Received Date: 02 March 2024
    Accepted Date: 09 September 2024
  • China's dynamic zero-COVID policy has effectively curbed the spread of SARS-CoV-2, while inadvertently creating immunity gaps within its population. Subsequent surges in COVID-19 cases linked to various SARS-CoV-2 lineages post-policy termination necessitate a thorough investigation into the epidemiological landscape. This study addresses this issue by analyzing a comprehensive dataset of 39,456 high-quality genomes collected nationwide over an 11-month period since policy termination. Through lineage assignment, phylogenetic analysis, pandemic pattern comparison, phylodynamic reconstruction, and recombination detection, we found that China's post-epidemic period could be divided into three stages, along with dynamic changes in dominant lineages. Geographical clustering of similar lineages implies the importance of cross-border cooperation among neighboring regions. Compared to the USA, UK, and Japan, China exhibits unique trajectories of lineage epidemics, characterized by initial lagging followed by subsequent advancement, indicating the potential influence of diverse prevention and control policies on lineage epidemic patterns. Hong Kong, Shanghai, and Hubei emerge as pivotal nodes in the nationwide spread, marking a shift in the transmission center from east to central regions of China. Although China hasn't experienced significant variant emergence, the detection and validation of the novel recombination event, XCN lineage, underscore the ongoing virus evolution. Overall, this study systematically analyzes the spatiotemporal transmission of SARS-CoV-2 virus in China since the termination of the dynamic zero-COVID policy, offering valuable insights for regional surveillance and evidence-based public health policymaking.

  • 加载中
    1. Aksamentov, I., Roemer, C., Hodcroft, E. B., Neher, R. A., 2021. Nextclade: clade assignment, mutation calling and quality control for viral genomes. J. Open Source Softw. 6, 3773.

    2. Alteri, C., Cento, V., Piralla, A., Costabile, V., Tallarita, M., Colagrossi, L., Renica, S., Giardina, F., Novazzi, F., Gaiarsa, S. et al., 2021. Genomic epidemiology of SARS-CoV-2 reveals multiple lineages and early spread of SARS-CoV-2 infections in Lombardy, Italy. Nat. Commun. 12, 434.

    3. Andrews, N., Stowe, J., Kirsebom, F., Toffa, S., Rickeard, T., Gallagher, E., Gower, C., Kall, M., Groves, N., O’Connell, A.M. et al., 2022. Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) variant. N. Engl. J. Med. 386, 1532-1546.

    4. Ba, Z., Li, Y., Ma, J., Qin, Y., Tian, J., Meng, Y., Yi, J., Zhang, Y., Chen, F., 2023. Reflections on the dynamic zero-COVID policy in China. Prev. Med. Rep. 36, 102466.

    5. Chen, C., Nadeau, S., Yared, M., Voinov, P., Xie, N., Roemer, C., Stadler, T., 2022. CoV-Spectrum: analysis of globally shared SARS-CoV-2 data to identify and characterize new variants. Bioinformatics. 38, 1735-1737.

    6. Cheng, Y., Ji, C., Han, N., Li, J., Xu, L., Chen, Z., Yang, R., Zhou, H.Y., Wu, A., 2022. covSampler: a subsampling method with balanced genetic diversity for large-scale SARS-CoV-2 genome data sets. Virus Evol. 8, veac071.

    7. Chinese Center for Disease Control and Prevention (China CDC), 2023. COVID-19 clinical and surveillance data - December 9, 2022 to January 23, 2023, China. https://en.chinacdc.cn/news/latest/202301/W020230126558725888448.pdf (accessed 2 March 2024).

    8. CNCB-NGDC Members and Partners, 2023. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2023. Nucleic Acids Res. 51, D18-D28.

    9. Colson, P., Gautret, P., Delerce, J., Chaudet, H., Pontarotti, P., Forterre, P., Tola, R., Bedotto, M., Delorme, L., Bader, W. et al., 2023. The emergence, spread and vanishing of a French SARS-CoV-2 variant exemplifies the fate of RNA virus epidemics and obeys the Mistigri rule. J. Med. Virol. 95, e28102.

    10. Eaton, K., 2023. Rebar (REcombination BARcode detector). https://github.com/phac-nml/rebar (accessed 30 November 2023).

    11. Franceschi, V.B., Ferrareze, P.A.G., Zimerman, R.A., Cybis, G.B., Thompson, C.E., 2021. Mutation hotspots and spatiotemporal distribution of SARS-CoV-2 lineages in Brazil, February 2020-2021. Virus Res. 304, 198532.

    12. Goldberg, E.E., Lin, Q., Romero-Severson, E.O., Ke, R., 2023. Swift and extensive Omicron outbreak in China after sudden exit from “zero-COVID” policy. Nat. Commun. 14, 3888.

    13. Hadfield, J., Megill, C., Bell, S.M., Huddleston, J., Potter, B., Callender, C., Sagulenko, P., Bedford, T., Neher, R.A., 2018. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 34, 4121-4123.

    14. Huang, J., Zhao, S., Chong, K.C., Zhou, Y., Lu, W., Fang, F., Cheung, P.P.H., Lai, K.C., Hui, D.S., Mok, C.K.P., 2023. Infection rate in Guangzhou after easing the zero-COVID policy: seroprevalence results to ORF8 antigen. Lancet. Infect. Dis. 23, 403-404.

    15. Ioannidis, J.P.A., Zonta, F., Levitt, M., 2023. Estimates of COVID-19 deaths in Mainland China after abandoning zero COVID policy. Eur. J. Clin. Invest. 53, e13956.

    16. Letko, M., Marzi, A., Munster, V., 2020. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 5, 562-569.

    17. Leung, K., Lau, E.H.Y., Wong, C.K.H., Leung, G.M., Wu, J.T., 2023. Estimating the transmission dynamics of SARS-CoV-2 Omicron BF.7 in Beijing after adjustment of the zero-COVID policy in November-December 2022. Nat. Med. 29, 579-582.

    18. Levi, R., Zerhouni, E.G., Altuvia, S., 2024. Predicting the spread of SARS-CoV-2 variants: An artificial intelligence enabled early detection. PNAS Nexus 3, pgad424.

    19. Li, J., Zhou, Cheng, Y., Ji, C., Weng, S., Han, N., Yang, R., Zhou, H., Wu, A., 2023. Comprehensive detection and dissection of interlineage recombination events in the SARS-CoV-2 pandemic. Preprint in Research Square platform. https://doi.org/10.21203/rs.3.rs-2924668/v2.

    20. Li, X., Zhang, Y., Zhang, J., Sui, Z., Qu, X., Wang, M., Miao, T., Li, J., 2023. Genomic surveillance of SARS-CoV-2 in Weihai, China, march 2022 to march 2023. Front. Public Health 11, 1273443.

    21. Liu, L., Liu, H., 2023. Levels of antibodies to SARS-CoV-2 at key time points during the COVID-19 pandemic in China. Front. Public Health 11, 1271917.

    22. Liu, P., Xu, J., 2023. Genomic surveillance of SARS-CoV-2 in mainland China after ending the zero-COVID policy, December 2022-January 2023. J. Infect. 86, e84-e86.

    23. Liu, P., Cai, J., Tian, H., Li, J., Lu, L., Xu, M., Zhu, X., Fu, X., Wang, X., Zhong, H. et al., 2024. Characteristics of SARS-CoV-2 Omicron BA. 5 variants in Shanghai after ending the zero-COVID policy in December 2022: a clinical and genomic analysis. Front. Microbiol. 15, 1372078.

    24. Markov, P. V, Ghafari, M., Beer, M., Lythgoe, K., Simmonds, P., Stilianakis, N.I., Katzourakis, A., 2023. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 21, 361-379.

    25. Messacar, K., Baker, R.E., Park, S.W., Nguyen-Tran, H., Cataldi, J.R., Grenfell, B., 2022. Preparing for uncertainty: endemic paediatric viral illnesses after COVID-19 pandemic disruption. Lancet 400, 1663-1665.

    26. Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A., Lanfear, R., 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530-1534.

    27. Moeti, M., Gao, G.F., Herrman, H., 2022. Global pandemic perspectives: public health, mental health, and lessons for the future. Lancet 400, e3-e7.

    28. Pan, Y., Wang, L., Feng, Z., Xu, H., Li, F., Shen, Y., Zhang, D., Liu, W.J., Gao, G.F., Wang, Q., 2023. Characterisation of SARS-CoV-2 variants in Beijing during 2022: an epidemiological and phylogenetic analysis. Lancet 401, 664-672.

    29. Price, M.N., Dehal, P.S., Arkin, A.P., 2010. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490.

    30. Roemer, C., 2020. Pango-designation of CoV-lineages. https://github.com/cov-lineages/pango-designation/blob/master/lineage_notes.txt (accessed 23 April 2024).

    31. Ryu, S., Chun, J.Y., Lee, S., Yoo, D., Kim, Y., Ali, S.T., Chun, B.C., 2022. Epidemiology and transmission dynamics of infectious diseases and control measures. Viruses 14, 2510.

    32. Sagulenko, P., Puller, V., Neher, R.A., 2018. TreeTime: maximum-likelihood phylodynamic analysis. Virus Evol. 4, vex042.

    33. Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A. and Li, F., 2020. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U S A. 117, 11727-11734.

    34. Shu, Y., McCauley, J., 2017. GISAID: global initiative on sharing all influenza data - from vision to reality. Euro. Surveill. 22, 30494.

    35. South, A., 2011. rworldmap: a new R package for mapping global data. R. J. 3, 35-43.

    36. Suk, J.E., Van Cangh, T., Beaute, J., Bartels, C., Tsolova, S., Pharris, A., Ciotti, M., Semenza, J.C., 2014. The interconnected and cross-border nature of risks posed by infectious diseases. Glob. Health Action 7, 25287.

    37. Tan, W., Zhao, X., Ma, X., Wang, W., Niu, P., Xu, W., Gao, G.F., Wu, G., 2020. A novel coronavirus genome identified in a cluster of pneumonia cases - Wuhan, China 2019-2020. China CDC Wkly. 2, 61-62.

    38. Tegally, H., San, J.E., Cotten, M., Moir, M., Tegomoh, B., Mboowa, G., Martin, D.P., Baxter, C., Lambisia, A.W., Diallo, A. et al., 2022. The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance. Science 378, eabq5358.

    39. Tegally, H., Wilkinson, E., Tsui, J.L., Moir, M., Martin, D., Brito, A.F., Giovanetti, M., Khan, K., Huber, C., Bogoch, I.I. et al., 2023. Dispersal patterns and influence of air travel during the global expansion of SARS-CoV-2 variants of concern. Cell 186, 3277-3290.

    40. Turakhia, Y., Thornlow, B., Hinrichs, A., McBroome, J., Ayala, N., Ye, C., Smith, K., De Maio, N., Haussler, D., Lanfear, R. et al., 2022. Pandemic-scale phylogenomics reveals the SARS-CoV-2 recombination landscape. Nature 609, 994-997.

    41. Xia, Y., Zhong, L., Tan, J., Zhang, Z., Lyu, J., Chen, Y., Zhao, A., Huang, L., Long, Z., Liu, N. et al., 2020. How to understand “herd immunity” in COVID-19 pandemic. Front. Cell Dev. Biol. 8, 547314.

    42. Yu, G., Smith, D.K., Zhu, H., Guan, Y., Lam, T.T., 2017. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28-36.

    43. Yu, Y., Zhang, J.Y., Ma, H., Han, Y., Cheng, L.X., Tian, X.Y., Wu, J.L., Li, Y., Zhang, Y.W., Chen, D.Y. et al., 2022. Analysis on the infection source of the first local cluster epidemic caused by the VOC/Gamma variant of SARS-CoV-2 in China. Zhonghua Yu Fang Yi Xue Za Zhi 56, 1789-1794. (in Chinese).

    44. Zhou, L., Wu, Z., Li, Z., Zhang, Y., McGoogan, J.M., Li, Q., Dong, X., Ren, R., Feng, L., Qi, X. et al., 2020. One hundred days of coronavirus disease 2019 prevention and control in China. Clin. Infect. Dis. 72, 332-339.

    45. Zhou, Y.H., Xu, C., Tao, Y., Gu, M., Zhou, G., Zhou, W., Jin, Y., Xie, J., Xu, B., Zhou, W. et al., 2023. Incidence of SARS-CoV-2 infection in children shortly after ending zero-COVID-19 policy in China on December 7, 2022: a cross-sectional, multicenter, seroepidemiological study. Front. Public Health 11, 1283158.

    46. Zhu, M., Zeng, Q., Saputro, B.I.L., Chew, S.P., Chew, I., Frendy, H., Tan, J.W., Li, L., 2022. Tracking the molecular evolution and transmission patterns of SARS-CoV-2 lineage B. 1.466. 2 in Indonesia based on genomic surveillance data. Virol. J. 19, 103.

  • 加载中
  • 10.1016j.virs.2024.09.003-ESM4.xlsx
    10.1016j.virs.2024.09.003-ESM1.docx
    10.1016j.virs.2024.09.003-ESM6.xlsx
    10.1016j.virs.2024.09.003-ESM2.xlsx
    10.1016j.virs.2024.09.003-ESM9.xlsx
    10.1016j.virs.2024.09.003-ESM8.xlsx
    10.1016j.virs.2024.09.003-ESM7.xlsx
    10.1016j.virs.2024.09.003-ESM5.xlsx
    10.1016j.virs.2024.09.003-ESM3.xlsx

Figures(1)

Article Metrics

Article views(547) PDF downloads(4) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    The spatiotemporal analysis of SARS-CoV-2 transmission in China since the termination of the dynamic zero-COVID policy

      Corresponding author: Aiping Wu, wap@ism.cams.cn
    • a. State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China;
    • b. Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 100730, China

    Abstract: China's dynamic zero-COVID policy has effectively curbed the spread of SARS-CoV-2, while inadvertently creating immunity gaps within its population. Subsequent surges in COVID-19 cases linked to various SARS-CoV-2 lineages post-policy termination necessitate a thorough investigation into the epidemiological landscape. This study addresses this issue by analyzing a comprehensive dataset of 39,456 high-quality genomes collected nationwide over an 11-month period since policy termination. Through lineage assignment, phylogenetic analysis, pandemic pattern comparison, phylodynamic reconstruction, and recombination detection, we found that China's post-epidemic period could be divided into three stages, along with dynamic changes in dominant lineages. Geographical clustering of similar lineages implies the importance of cross-border cooperation among neighboring regions. Compared to the USA, UK, and Japan, China exhibits unique trajectories of lineage epidemics, characterized by initial lagging followed by subsequent advancement, indicating the potential influence of diverse prevention and control policies on lineage epidemic patterns. Hong Kong, Shanghai, and Hubei emerge as pivotal nodes in the nationwide spread, marking a shift in the transmission center from east to central regions of China. Although China hasn't experienced significant variant emergence, the detection and validation of the novel recombination event, XCN lineage, underscore the ongoing virus evolution. Overall, this study systematically analyzes the spatiotemporal transmission of SARS-CoV-2 virus in China since the termination of the dynamic zero-COVID policy, offering valuable insights for regional surveillance and evidence-based public health policymaking.

    Figure (1)  Reference (46) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return