. doi: 10.1016/j.virs.2024.09.004
Citation: Yang Xiao, Shuofeng Yuan, Ye Qiu, Xing-Yi Ge. Virome-wide analysis of histone modification mimicry motifs carried by viral proteins .VIROLOGICA SINICA, 2024, 39(5) : 793-801.  http://dx.doi.org/10.1016/j.virs.2024.09.004

病毒蛋白所携带的组蛋白修饰模拟序列的病毒组学分析

cstr: 32224.14.j.virs.2024.09.004
  • 组蛋白模拟(Histone mimicry, HM)指的是病毒蛋白中存在短线性序列,能模拟宿主组蛋白关键区域。这些序列有潜力干扰宿主细胞表观基因组,并拮抗宿主抗病毒反应。最新研究显示,HM对流感病毒和冠状病毒的致病性和传播性至关重要。然而,真核病毒中HM的分布、特征和功能仍不清楚。我们开发了一种生物信息学工具HiScan,用于识别病毒蛋白中的HM序列,并预测它们的功能。通过分析592643个病毒蛋白,我们发现,潜在的HM序列广泛分布于大部分病毒蛋白中。在动物病毒中,DNA病毒和RNA病毒中的HM序列数量比约为1.9:1,基因组更小的病毒具有更高的HM序列密度。值得注意的是,冠状病毒HM序列的分布不均匀,β冠状病毒(包括大部分对人类有致病性的冠状病毒)在NSP3、S和N蛋白中含有更多HM序列。综上所述,我们利用HiScan对病毒组进行的HM序列筛查,揭示了潜在HM序列在大部分病毒蛋白中广泛存在但分布不均匀,特别是在DNA病毒中分布较RNA病毒多。病毒HM可能在调节病毒致病性和病毒-宿主相互作用中发挥重要作用,这为病毒学和抗病毒药物研究提供了新的视角。

Virome-wide analysis of histone modification mimicry motifs carried by viral proteins

  • Histone mimicry (HM) refers to the presence of short linear motifs in viral proteins that mimic critical regions of host histone proteins. These motifs have the potential to interfere with host cell epigenome and counteract antiviral response. Recent research shows that HM is critical for the pathogenesis and transmissibility of influenza virus and coronavirus. However, the distribution, characteristics, and functions of HM in eukaryotic viruses remain obscure. Herein, we developed a bioinformatic pipeline, Histone Motif Scan (HiScan), to identify HM motifs in viral proteins and predict their functions in silico. By analyzing 592,643 viral proteins using HiScan, we found that putative HM motifs were widely distributed in most viral proteins. Among animal viruses, the ratio of HM motifs between DNA viruses and RNA viruses was approximately 1.9:1, and viruses with smaller genomes had a higher density of HM motifs. Notably, coronaviruses exhibited an uneven distribution of HM motifs, with betacoronaviruses (including most human pathogenic coronaviruses) harboring more HM motifs than other coronaviruses, primarily in the NSP3, S, and N proteins. In summary, our virome-wide screening of HM motifs using HiScan revealed extensive but uneven distribution of HM motifs in most viral proteins, with a preference in DNA viruses. Viral HM may play an important role in modulating viral pathogenicity and virus-host interactions, making it an attractive area of research in virology and antiviral medication.

  • 加载中
    1. Avgousti, D.C., Della Fera, A.N., Otter, C.J., Herrmann, C., Pancholi, N.J., Weitzman, M.D., 2017. Adenovirus core protein VII downregulates the DNA damage response on the host genome. J. Virol. 91, e01089-17.

    2. Avgousti, D.C., Herrmann, C., Kulej, K., Pancholi, N.J., Sekulic, N., Petrescu, J., Molden, R.C., Blumenthal, D., Paris, A.J., Reyes, E.D., et al., 2016. A core viral protein binds host nucleosomes to sequester immune danger signals. Nature 535, 173-177.

    3. Baisya, D.R., Lonardi, S., 2021. Prediction of histone post-translational modifications using deep learning. Bioinformatics 36, 5610-5617.

    4. Benveniste, D., Sonntag, H. J., Sanguinetti, G., Sproul, D., 2014. Transcription factor binding predicts histone modifications in human cell lines. Proc. Natl. Acad. Sci. U.S.A. 111, 13367-13372.

    5. Brownell, J.E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D.G., Roth, S.Y., Allis, C.D., 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843-851.

    6. Bryson, T.D., De Ioannes, P., Valencia-Sanchez, M.I., Henikoff, J.G., Talbert, P.B., Lee, R., La Scola, B., Armache, K.J., Henikoff, S., 2022. A giant virus genome is densely packaged by stable nucleosomes within virions. Mol. Cell 82, 4458-4470.e5.

    7. Challberg, M.D., Kelly, T.J., 1989. Animal virus DNA replication. Annu. Rev. Biochem. 58, 671-717.

    8. Champagne, J., Mordente, K., Nagel, R., Agami, R., 2022. Slippy-Sloppy translation: a tale of programmed and induced-ribosomal frameshifting. Trends Genet. 38, 1123-1133.

    9. Cheng, K., Xu, Y., Yang, C., Ouellette, L., Niu, L., Zhou, X., Chu, L., Zhuang, F., Liu, J., Wu, H., et al., 2020. Histone tales: lysine methylation, a protagonist in Arabidopsis development. J. Exp. Bot. 71, 793-807.

    10. Cheung, P., Tanner, K.G., Cheung, W.L., Sassone-Corsi, P., Denu, J.M., Allis, C.D., 2000. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5, 905-915.

    11. Cui, J., Li, F., Shi, Z.L., 2019. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181-192.

    12. Elde, N.C., Malik, H.S., 2009. The evolutionary conundrum of pathogen mimicry. Nat. Rev. Microbiol. 7, 787-797.

    13. Hans, F., Dimitrov, S., 2001. Histone H3 phosphorylation and cell division. Oncogene 20, 3021-3027.

    14. Jackson, J.P., Johnson, L., Jasencakova, Z., Zhang, X., PerezBurgos, L., Singh, P.B., Cheng, X., Schubert, I., Jenuwein, T., Jacobsen, S.E., 2004. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112, 308-315.

    15. Jacob, Y., Michaels, S.D., 2009. H3K27me1 is E(z) in animals, but not in plants. Epigenetics 4, 366-369.

    16. Jenuwein, T., Allis, C.D., 2001. Translating the histone code. Science 293, 1074-1080.

    17. Kasinath, V., Beck, C., Sauer, P., Poepsel, S., Kosmatka, J., Faini, M., Toso, D., Aebersold, R., Nogales, E., 2021. JARID2 and AEBP2 regulate PRC2 in the presence of H2AK119ub1 and other histone modifications. Science 371, eabc3393.

    18. Kee, J., Thudium, S., Renner, D.M., Glastad, K., Palozola, K., Zhang, Z., Li, Y., Lan, Y., Cesare, J., Poleshko, A., et al., 2022. SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature 610, 381-388.

    19. Lafon-Hughes, L., 2023. Towards understanding long COVID: SARS-CoV-2 strikes the host cell nucleus. Pathogens 12, 806.

    20. Lee, D.Y., Teyssier, C., Strahl, B.D., Stallcup, M.R., 2005. Role of protein methylation in regulation of transcription. Endocr. Rev. 26, 147-170.

    21. Liu, P., Wang, X., Sun, Y., Zhao, H., Cheng, F., Wang, J., Yang, F., Hu, J., Zhang, H., Wang, C.-C., et al., 2022. SARS-CoV-2 ORF8 reshapes the ER through forming mixed disulfides with ER oxidoreductases. Redox Biol. 54, 102388.

    22. Louten, J., 2016. Virus Replication. Essential Human Virology. Elsevier Inc., pp. 49-70.

    23. Marazzi, I., Ho, J.S.Y., Kim, J., Manicassamy, B., Dewell, S., Albrecht, R.A., Seibert, C.W., Schaefer, U., Jeffrey, K.L., Prinjha, R.K., et al., 2012. Suppression of the antiviral response by an influenza histone mimic. Nature 483, 428-433.

    24. Mattiroli, F., Penengo, L., 2021. Histone ubiquitination: an integrative signaling platform in genome stability. Trends Genet. 37, 566-581.

    25. Merx, J., Hintzen, J.C.J., Proietti, G., Elferink, H., Wang, Y., Porzberg, M.R.B., Sondag, D., Bilgin, N., Park, J., Mecinovic, J., et al., 2022. Investigation of in vitro histone H3 glycosylation using H3 tail peptides. Sci. Rep. 12, 19251.

    26. Moustaqil, M., Ollivier, E., Chiu, H.-P., Van Tol, S., Rudolffi-Soto, P., Stevens, C., Bhumkar, A., Hunter, D.J.B., Freiberg, A.N., Jacques, D., et al., 2021. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg. Microb. Infect. 10, 178-195.

    27. Nowak, S.J., Corces, V.G., 2004. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20, 214-220.

    28. Pellett, P.E., Mitra, S., Holland, T.C., 2014. Basics of virology. Handb. Clin. Neurol. 123, 45-66.

    29. Peterson, C.L., Laniel, M.A., 2004. Histones and histone modifications. Curr. Biol. 14, R546-R551.

    30. Ryu, H.-Y., Zhao, D., Li, J., Su, D., Hochstrasser, M., 2020. Histone sumoylation promotes Set3 histone-deacetylase complex-mediated transcriptional regulation. Nucleic Acids Res. 48, 12151-12168.

    31. Sampath, Srihari C., Marazzi, I., Yap, K.L., Sampath, Srinath C., Krutchinsky, A.N., Mecklenbrauker, I., Viale, A., Rudensky, E., Zhou, M.-M., Chait, B.T., et al., 2007. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol. Cell 27, 596-608.

    32. Schaefer, U., Ho, J.S.Y., Prinjha, R.K., Tarakhovsky, A., 2013. The “histone mimicry” by pathogens. Cold Spring Harbor Symp. Quant. Biol. 78, 81-90.

    33. Shvedunova, M., Akhtar, A., 2022. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 23, 329-349.

    34. Summers, W.C., 2009. Virus Infection. Encyclopedia of Microbiology, third ed. Elsevier Inc., pp.546.

    35. Suzuki, K., Juelich, T., Lim, H., Ishida, T., Watanebe, T., Cooper, D.A., Rao, S., Kelleher, A.D., 2008. Closed chromatin architecture is induced by an RNA duplex targeting the HIV-1 promoter region. J. Biol. Chem. 283, 23353-23363.

    36. Tamburri, S., Lavarone, E., Fernandez-Perez, D., Conway, E., Zanotti, M., Manganaro, D., Pasini, D., 2020. Histone H2AK119 mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol. Cell 77, 840-856.e5.

    37. Tarakhovsky, A., Prinjha, R.K., 2018. Drawing on disorder: how viruses use histone mimicry to their advantage. J. Exp. Med. 215, 1777-1787.

    38. Worden, E.J., Hoffmann, N.A., Hicks, C.W., Wolberger, C., 2019. Mechanism of cross-talk between H2B ubiquitination and H3 methylation by Dot1L. Cell 176, 1490-1501.e12.

    39. Yang, H., Rao, Z., 2021. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat. Rev. Microbiol. 19, 685-700.

    40. Yin, Q., Wu, M., Liu, Q., Lv, H., Jiang, R., 2019. DeepHistone: a deep learning approach to predicting histone modifications. BMC Genom. 20, 193.

    41. Yoon, S., Kim, M., Lee, H., Kang, G., Bedi, K., Margulies, K.B., Jain, R., Nam, K.-I., Kook, H., Eom, G.H., 2021. S-nitrosylation of histone deacetylase 2 by neuronal nitric oxide synthase as a mechanism of diastolic dysfunction. Circulation 143, 1912-1925.

    42. Yu, Y., Wen, H., Shi, X., 2021. Histone mimics: more tales to read. Biochem. J. 478, 2789-2791.

    43. Yuan, S., Gao, X., Tang, K., Cai, J.P., Hu, M., Luo, P., Wen, L., Ye, Z.W., Luo, C., Tsang, J.O. et al., 2022. Targeting papain-like protease for broad-spectrum coronavirus inhibition. Protein Cell. 13, 940-953.

  • 加载中
  • 10.1016j.virs.2024.09.004-ESM1.docx
    10.1016j.virs.2024.09.004-ESM2.mp4

Figures(1)

Article Metrics

Article views(542) PDF downloads(3) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Virome-wide analysis of histone modification mimicry motifs carried by viral proteins

      Corresponding author: Ye Qiu, qiuye@hnu.edu.cn
      Corresponding author: Xing-Yi Ge, xyge@hnu.edu.cn
    • a. Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, 410012, China;
    • b. Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China

    Abstract: Histone mimicry (HM) refers to the presence of short linear motifs in viral proteins that mimic critical regions of host histone proteins. These motifs have the potential to interfere with host cell epigenome and counteract antiviral response. Recent research shows that HM is critical for the pathogenesis and transmissibility of influenza virus and coronavirus. However, the distribution, characteristics, and functions of HM in eukaryotic viruses remain obscure. Herein, we developed a bioinformatic pipeline, Histone Motif Scan (HiScan), to identify HM motifs in viral proteins and predict their functions in silico. By analyzing 592,643 viral proteins using HiScan, we found that putative HM motifs were widely distributed in most viral proteins. Among animal viruses, the ratio of HM motifs between DNA viruses and RNA viruses was approximately 1.9:1, and viruses with smaller genomes had a higher density of HM motifs. Notably, coronaviruses exhibited an uneven distribution of HM motifs, with betacoronaviruses (including most human pathogenic coronaviruses) harboring more HM motifs than other coronaviruses, primarily in the NSP3, S, and N proteins. In summary, our virome-wide screening of HM motifs using HiScan revealed extensive but uneven distribution of HM motifs in most viral proteins, with a preference in DNA viruses. Viral HM may play an important role in modulating viral pathogenicity and virus-host interactions, making it an attractive area of research in virology and antiviral medication.

    Figure (1)  Reference (43) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return