-
Avgousti, D.C., Della Fera, A.N., Otter, C.J., Herrmann, C., Pancholi, N.J., Weitzman, M.D., 2017. Adenovirus core protein VII downregulates the DNA damage response on the host genome. J. Virol. 91, e01089-17.
-
Avgousti, D.C., Herrmann, C., Kulej, K., Pancholi, N.J., Sekulic, N., Petrescu, J., Molden, R.C., Blumenthal, D., Paris, A.J., Reyes, E.D., et al., 2016. A core viral protein binds host nucleosomes to sequester immune danger signals. Nature 535, 173-177.
-
Baisya, D.R., Lonardi, S., 2021. Prediction of histone post-translational modifications using deep learning. Bioinformatics 36, 5610-5617.
-
Benveniste, D., Sonntag, H. J., Sanguinetti, G., Sproul, D., 2014. Transcription factor binding predicts histone modifications in human cell lines. Proc. Natl. Acad. Sci. U.S.A. 111, 13367-13372.
-
Brownell, J.E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D.G., Roth, S.Y., Allis, C.D., 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843-851.
-
Bryson, T.D., De Ioannes, P., Valencia-Sanchez, M.I., Henikoff, J.G., Talbert, P.B., Lee, R., La Scola, B., Armache, K.J., Henikoff, S., 2022. A giant virus genome is densely packaged by stable nucleosomes within virions. Mol. Cell 82, 4458-4470.e5.
-
Challberg, M.D., Kelly, T.J., 1989. Animal virus DNA replication. Annu. Rev. Biochem. 58, 671-717.
-
Champagne, J., Mordente, K., Nagel, R., Agami, R., 2022. Slippy-Sloppy translation: a tale of programmed and induced-ribosomal frameshifting. Trends Genet. 38, 1123-1133.
-
Cheng, K., Xu, Y., Yang, C., Ouellette, L., Niu, L., Zhou, X., Chu, L., Zhuang, F., Liu, J., Wu, H., et al., 2020. Histone tales: lysine methylation, a protagonist in Arabidopsis development. J. Exp. Bot. 71, 793-807.
-
Cheung, P., Tanner, K.G., Cheung, W.L., Sassone-Corsi, P., Denu, J.M., Allis, C.D., 2000. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5, 905-915.
-
Cui, J., Li, F., Shi, Z.L., 2019. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181-192.
-
Elde, N.C., Malik, H.S., 2009. The evolutionary conundrum of pathogen mimicry. Nat. Rev. Microbiol. 7, 787-797.
-
Hans, F., Dimitrov, S., 2001. Histone H3 phosphorylation and cell division. Oncogene 20, 3021-3027.
-
Jackson, J.P., Johnson, L., Jasencakova, Z., Zhang, X., PerezBurgos, L., Singh, P.B., Cheng, X., Schubert, I., Jenuwein, T., Jacobsen, S.E., 2004. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112, 308-315.
-
Jacob, Y., Michaels, S.D., 2009. H3K27me1 is E(z) in animals, but not in plants. Epigenetics 4, 366-369.
-
Jenuwein, T., Allis, C.D., 2001. Translating the histone code. Science 293, 1074-1080.
-
Kasinath, V., Beck, C., Sauer, P., Poepsel, S., Kosmatka, J., Faini, M., Toso, D., Aebersold, R., Nogales, E., 2021. JARID2 and AEBP2 regulate PRC2 in the presence of H2AK119ub1 and other histone modifications. Science 371, eabc3393.
-
Kee, J., Thudium, S., Renner, D.M., Glastad, K., Palozola, K., Zhang, Z., Li, Y., Lan, Y., Cesare, J., Poleshko, A., et al., 2022. SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature 610, 381-388.
-
Lafon-Hughes, L., 2023. Towards understanding long COVID: SARS-CoV-2 strikes the host cell nucleus. Pathogens 12, 806.
-
Lee, D.Y., Teyssier, C., Strahl, B.D., Stallcup, M.R., 2005. Role of protein methylation in regulation of transcription. Endocr. Rev. 26, 147-170.
-
Liu, P., Wang, X., Sun, Y., Zhao, H., Cheng, F., Wang, J., Yang, F., Hu, J., Zhang, H., Wang, C.-C., et al., 2022. SARS-CoV-2 ORF8 reshapes the ER through forming mixed disulfides with ER oxidoreductases. Redox Biol. 54, 102388.
-
Louten, J., 2016. Virus Replication. Essential Human Virology. Elsevier Inc., pp. 49-70.
-
Marazzi, I., Ho, J.S.Y., Kim, J., Manicassamy, B., Dewell, S., Albrecht, R.A., Seibert, C.W., Schaefer, U., Jeffrey, K.L., Prinjha, R.K., et al., 2012. Suppression of the antiviral response by an influenza histone mimic. Nature 483, 428-433.
-
Mattiroli, F., Penengo, L., 2021. Histone ubiquitination: an integrative signaling platform in genome stability. Trends Genet. 37, 566-581.
-
Merx, J., Hintzen, J.C.J., Proietti, G., Elferink, H., Wang, Y., Porzberg, M.R.B., Sondag, D., Bilgin, N., Park, J., Mecinovic, J., et al., 2022. Investigation of in vitro histone H3 glycosylation using H3 tail peptides. Sci. Rep. 12, 19251.
-
Moustaqil, M., Ollivier, E., Chiu, H.-P., Van Tol, S., Rudolffi-Soto, P., Stevens, C., Bhumkar, A., Hunter, D.J.B., Freiberg, A.N., Jacques, D., et al., 2021. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg. Microb. Infect. 10, 178-195.
-
Nowak, S.J., Corces, V.G., 2004. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20, 214-220.
-
Pellett, P.E., Mitra, S., Holland, T.C., 2014. Basics of virology. Handb. Clin. Neurol. 123, 45-66.
-
Peterson, C.L., Laniel, M.A., 2004. Histones and histone modifications. Curr. Biol. 14, R546-R551.
-
Ryu, H.-Y., Zhao, D., Li, J., Su, D., Hochstrasser, M., 2020. Histone sumoylation promotes Set3 histone-deacetylase complex-mediated transcriptional regulation. Nucleic Acids Res. 48, 12151-12168.
-
Sampath, Srihari C., Marazzi, I., Yap, K.L., Sampath, Srinath C., Krutchinsky, A.N., Mecklenbrauker, I., Viale, A., Rudensky, E., Zhou, M.-M., Chait, B.T., et al., 2007. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol. Cell 27, 596-608.
-
Schaefer, U., Ho, J.S.Y., Prinjha, R.K., Tarakhovsky, A., 2013. The “histone mimicry” by pathogens. Cold Spring Harbor Symp. Quant. Biol. 78, 81-90.
-
Shvedunova, M., Akhtar, A., 2022. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 23, 329-349.
-
Summers, W.C., 2009. Virus Infection. Encyclopedia of Microbiology, third ed. Elsevier Inc., pp.546.
-
Suzuki, K., Juelich, T., Lim, H., Ishida, T., Watanebe, T., Cooper, D.A., Rao, S., Kelleher, A.D., 2008. Closed chromatin architecture is induced by an RNA duplex targeting the HIV-1 promoter region. J. Biol. Chem. 283, 23353-23363.
-
Tamburri, S., Lavarone, E., Fernandez-Perez, D., Conway, E., Zanotti, M., Manganaro, D., Pasini, D., 2020. Histone H2AK119 mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol. Cell 77, 840-856.e5.
-
Tarakhovsky, A., Prinjha, R.K., 2018. Drawing on disorder: how viruses use histone mimicry to their advantage. J. Exp. Med. 215, 1777-1787.
-
Worden, E.J., Hoffmann, N.A., Hicks, C.W., Wolberger, C., 2019. Mechanism of cross-talk between H2B ubiquitination and H3 methylation by Dot1L. Cell 176, 1490-1501.e12.
-
Yang, H., Rao, Z., 2021. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat. Rev. Microbiol. 19, 685-700.
-
Yin, Q., Wu, M., Liu, Q., Lv, H., Jiang, R., 2019. DeepHistone: a deep learning approach to predicting histone modifications. BMC Genom. 20, 193.
-
Yoon, S., Kim, M., Lee, H., Kang, G., Bedi, K., Margulies, K.B., Jain, R., Nam, K.-I., Kook, H., Eom, G.H., 2021. S-nitrosylation of histone deacetylase 2 by neuronal nitric oxide synthase as a mechanism of diastolic dysfunction. Circulation 143, 1912-1925.
-
Yu, Y., Wen, H., Shi, X., 2021. Histone mimics: more tales to read. Biochem. J. 478, 2789-2791.
-
Yuan, S., Gao, X., Tang, K., Cai, J.P., Hu, M., Luo, P., Wen, L., Ye, Z.W., Luo, C., Tsang, J.O. et al., 2022. Targeting papain-like protease for broad-spectrum coronavirus inhibition. Protein Cell. 13, 940-953.