. doi: 10.1016/j.virs.2024.09.005
Citation: Shaohong Chen, Xinghai Zhang, Yanfeng Yao, Shengdong Wang, Kangyin Li, Baoyue Zhang, Tianxi Ye, Li Chen, Yan Wu, Entao Li, Bichao Xu, Pei Zhang, Xia Chuai, Yong Ran, Rui Gong, Huajun Zhang, Sandra Chiu. Ferritin nanoparticle-based Nipah virus glycoprotein vaccines elicit potent protective immune responses in mice and hamsters .VIROLOGICA SINICA, 2024, 39(6) : 909-916.  http://dx.doi.org/10.1016/j.virs.2024.09.005

基于铁蛋白的纳米颗粒尼帕病毒糖蛋白疫苗可在小鼠和仓鼠体内引起保护性免疫反应

cstr: 32224.14.j.virs.2024.09.005
  • 尼帕病毒属于副粘病毒科,亨尼帕病毒属,是一种在东南亚流行的人畜共患病毒,能导致人类和动物患上严重的呼吸系统疾病和脑炎,其致死率高达75%。该病毒对世界公共卫生和全球生物安全造成了严重的威胁,但目前仍无针对该病毒的上市疫苗。因此本研究将尼帕病毒的可溶性糖蛋白G(sG)或糖蛋白G的头部区域 (Ghead) 作为抗原,通过spycatcher/spytag技术将抗原装载在铁蛋白纳米颗粒上,制备了两种基于铁蛋白的纳米颗粒疫苗(FeNP-sG 和 FeNP-Ghead)。与sG或Ghead亚单位疫苗相比,FeNP-sG 和 FeNP-Ghead 在小鼠中能够诱导较强的体液免疫和细胞反应,而FeNP-sG 免疫组的效果优于FeNP-Ghead 免疫组。研究结果进表明,sG 具有比 Ghead 更好的抗原性,且纳米颗粒疫苗可以显着增强免疫原性。此外,用5μg FeNP-sG 疫苗免疫仓鼠2次后进行NiV的攻毒实验,该疫苗可对仓鼠提供100% 的保护。因此本研究的对于抗击NiV等新发传染病具有重要意义,有助于全球公共卫生领域更好地应对未来可能出现的疫情。

Ferritin nanoparticle-based Nipah virus glycoprotein vaccines elicit potent protective immune responses in mice and hamsters

  • Nipah virus (NiV) is a zoonotic paramyxovirus in the genus Henipavirus that is prevalent in Southeast Asia. NiV leads to severe respiratory disease and encephalitis in humans and animals, with a mortality rate of up to 75%. Despite the grave threat to public health and global biosecurity, no medical countermeasures are available for humans. Here, based on self-assembled ferritin nanoparticles (FeNPs), we successfully constructed two candidate FeNP vaccines by loading mammalian cells expressing NiV sG (residues 71-602, FeNP-sG) and Ghead (residues 182-602, FeNP-Ghead) onto E. coli-expressed FeNPs (FeNP-sG and FeNP-Ghead, respectively) through Spycatcher/Spytag technology. Compared with sG and Ghead alone, FeNP-sG and FeNP-Ghead elicited significant NiV specific neutralizing antibody levels and T-cell responses in mice, whereas the immune response in the FeNP-sG immunized group was greater than that in the FeNP-Ghead group. These results further demonstrate that sG possesses greater antigenicity than Ghead and that FeNPs can dramatically enhance immunogenicity. Furthermore, FeNP-sG provided 100% protection against NiV challenge in a hamster model when it was administered twice at a dose of 5 μg/per animal. Our study provides not only a promising candidate vaccine against NiV, but also a theoretical foundation for the design of a NiV immunogen for the development of novel strategies against NiV infection.

  • 加载中
    1. AbuBakar S, Chang LY, Ali AR, Sharifah SH, Yusoff K, Zamrod Z. 2004. Isolation and molecular identification of Nipah virus from pigs. Emerg Infect Dis, 10: 2228-2230.

    2. Butkovich N, Li E, Ramirez A, Burkhardt AM, Wang SW. 2021. Advancements in protein nanoparticle vaccine platforms to combat infectious disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 13: e1681.

    3. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, Ksiazek TG, Rollin PE, Zaki SR, Shieh W, Goldsmith CS, Gubler DJ, Roehrig JT, Eaton B, Gould AR, Olson J, Field H, Daniels P, Ling AE, Peters CJ, Anderson LJ, Mahy BW. 2000. Nipah virus: a recently emergent deadly paramyxovirus. Science, 288: 1432-1435.

    4. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT. 1999. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet, 354: 1257-1259.

    5. DeBuysscher BL, de Wit E, Munster VJ, Scott D, Feldmann H, Prescott J. 2013. Comparison of the pathogenicity of Nipah virus isolates from Bangladesh and Malaysia in the Syrian hamster. PLoS Negl Trop Dis, 7: e2024.

    6. DeBuysscher BL, Scott D, Marzi A, Prescott J, Feldmann H. 2014. Single-dose live-attenuated Nipah virus vaccines confer complete protection by eliciting antibodies directed against surface glycoproteins. Vaccine, 32: 2637-2644.

    7. Dong J, Cross RW, Doyle MP, Kose N, Mousa JJ, Annand EJ, Borisevich V, Agans KN, Sutton R, Nargi R, Majedi M, Fenton KA, Reichard W, Bombardi RG, Geisbert TW, Crowe JE, Jr. 2020. Potent Henipavirus Neutralization by Antibodies Recognizing Diverse Sites on Hendra and Nipah Virus Receptor Binding Protein. Cell, 183: 1536-155 e17.

    8. Eaton BT, Broder CC, Middleton D, Wang LF. 2006. Hendra and Nipah viruses: different and dangerous. Nat Rev Microbiol, 4: 23-35.

    9. Geisbert TW, Bobb K, Borisevich V, Geisbert JB, Agans KN, Cross RW, Prasad AN, Fenton KA, Yu H, Fouts TR, Broder CC, Dimitrov AS. 2021. A single dose investigational subunit vaccine for human use against Nipah virus and Hendra virus. NPJ Vaccines, 6: 23.

    10. Gomez Roman R, Tornieporth N, Cherian NG, Shurtleff AC, L'Azou Jackson M, Yeskey D, Hacker A, Mungai E, Le TT. 2022. Medical countermeasures against henipaviruses: a review and public health perspective. Lancet Infect Dis, 22: e13-e27.

    11. Guillaume V, Contamin H, Loth P, Georges-Courbot MC, Lefeuvre A, Marianneau P, Chua KB, Lam SK, Buckland R, Deubel V, Wild TF. 2004. Nipah virus: vaccination and passive protection studies in a hamster model. J Virol, 78: 834-840.

    12. Gurley ES, Hegde ST, Hossain K, Sazzad HMS, Hossain MJ, Rahman M, Sharker MAY, Salje H, Islam MS, Epstein JH, Khan SU, Kilpatrick AM, Daszak P, Luby SP. 2017. Convergence of Humans, Bats, Trees, and Culture in Nipah Virus Transmission, Bangladesh. Emerg Infect Dis, 23: 1446-1453.

    13. Kang YF, Sun C, Zhuang Z, Yuan RY, Zheng Q, Li JP, Zhou PP, Chen XC, Liu Z, Zhang X, Yu XH, Kong XW, Zhu QY, Zhong Q, Xu M, Zhong NS, Zeng YX, Feng GK, Ke C, Zhao JC, Zeng MS. 2021. Rapid Development of SARS-CoV-2 Spike Protein Receptor-Binding Domain Self-Assembled Nanoparticle Vaccine Candidates. ACS Nano, 15: 2738-2752.

    14. Khusro A, Aarti C, Pliego AB, Cipriano-Salazar M. 2020. Hendra Virus Infection in Horses: A Review on Emerging Mystery Paramyxovirus. J Equine Vet Sci, 91: 103149.

    15. Lee LA, Wang Q. 2006. Adaptations of nanoscale viruses and other protein cages for medical applications. Nanomedicine, 2: 137-149.

    16. Liew YJM, Ibrahim PAS, Ong HM, Chong CN, Tan CT, Schee JP, Gomez Roman R, Cherian NG, Wong WF, Chang LY. 2022. The Immunobiology of Nipah Virus. Microorganisms, 10:1162-1181.

    17. Ma X, Zou F, Yu F, Li R, Yuan Y, Zhang Y, Zhang X, Deng J, Chen T, Song Z, Qiao Y, Zhan Y, Liu J, Zhang J, Zhang X, Peng Z, Li Y, Lin Y, Liang L, Wang G, Chen Y, Chen Q, Pan T, He X, Zhang H. 2020. Nanoparticle Vaccines Based on the Receptor Binding Domain (RBD) and Heptad Repeat (HR) of SARS-CoV-2 Elicit Robust Protective Immune Responses. Immunity, 53: 1315-1330.

    18. McEachern JA, Bingham J, Crameri G, Green DJ, Hancock TJ, Middleton D, Feng YR, Broder CC, Wang LF, Bossart KN. 2008. A recombinant subunit vaccine formulation protects against lethal Nipah virus challenge in cats. Vaccine, 26: 3842-3852.

    19. Mohandas S, Shete A, Sarkale P, Kumar A, Mote C, Yadav P. 2023. Genomic characterization, transcriptome analysis, and pathogenicity of the Nipah virus (Indian isolate). Virulence, 14: 2224642.

    20. Ploquin A, Szecsi J, Mathieu C, Guillaume V, Barateau V, Ong KC, Wong KT, Cosset FL, Horvat B, Salvetti A. 2013. Protection against henipavirus infection by use of recombinant adeno-associated virus-vector vaccines. J Infect Dis, 207: 469-478.

    21. Satterfield BA, Dawes BE, Milligan GN. 2016. Status of vaccine research and development of vaccines for Nipah virus. Vaccine, 34: 2971-2975.

    22. Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, Munjal A, Vora KS, Latheef SK, Karthik K, Singh Malik Y, Singh R, Chaicumpa W, Mourya DT. 2019. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Vet Q, 39: 26-55.

    23. Smith DM, Simon JK, Baker JR, Jr. 2013. Applications of nanotechnology for immunology. Nat Rev Immunol, 13: 592-605.

    24. Tian JH, Patel N, Haupt R, Zhou H, Weston S, Hammond H, Logue J, Portnoff AD, Norton J, Guebre-Xabier M, Zhou B, Jacobson K, Maciejewski S, Khatoon R, Wisniewska M, Moffitt W, Kluepfel-Stahl S, Ekechukwu B, Papin J, Boddapati S, Jason Wong C, Piedra PA, Frieman MB, Massare MJ, Fries L, Bengtsson KL, Stertman L, Ellingsworth L, Glenn G, Smith G. 2021. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun, 12: 372.

    25. Wang Z, Amaya M, Addetia A, Dang HV, Reggiano G, Yan L, Hickey AC, DiMaio F, Broder CC, Veesler D. 2022. Architecture and antigenicity of the Nipah virus attachment glycoprotein. Science, 375: 1373-1378.

    26. Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, Moy VT, Howarth M. 2012. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A, 109: E690-697.

    27. Zhang Y, Zhou Z, Zhu SL, Zu X, Wang Z, Zhang LK, Wang W, Xiao G. 2019. A novel RSV F-Fc fusion protein vaccine reduces lung injury induced by respiratory syncytial virus infection. Antiviral Res, 165: 11-22.

    28. Zhao S, Zhang H, Yang X, Zhang H, Chen Y, Zhan Y, Zhang X, Jiang R, Liu M, Liu L, Chen L, Tang W, Peng C, Gao X, Zhang Z, Shi Z, Gong R. 2021. Identification of potent human neutralizing antibodies against SARS-CoV-2 implications for development of therapeutics and prophylactics. Nat Commun, 12: 4887.

  • 加载中
  • 10.1016j.virs.2024.09.005-ESM.docx

Figures(1)

Article Metrics

Article views(414) PDF downloads(8) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Ferritin nanoparticle-based Nipah virus glycoprotein vaccines elicit potent protective immune responses in mice and hamsters

      Corresponding author: Rui Gong, gongr@wh.iov.cn
      Corresponding author: Huajun Zhang, hjzhang@wh.iov.cn
      Corresponding author: Sandra Chiu, qiux@ustc.edu.cn
    • a. CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China;
    • b. University of Chinese Academy of Sciences, Beijing 100049, China;
    • c. Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
    • d. Institutional Center for Shared Technologies and Facilities of Wuhan Institute of Virology, CAS, Center for Instrumental Analysis and Metrology, Wuhan 430062, China;
    • e. Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China;
    • f. Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230027, China;
    • g. Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China

    Abstract: Nipah virus (NiV) is a zoonotic paramyxovirus in the genus Henipavirus that is prevalent in Southeast Asia. NiV leads to severe respiratory disease and encephalitis in humans and animals, with a mortality rate of up to 75%. Despite the grave threat to public health and global biosecurity, no medical countermeasures are available for humans. Here, based on self-assembled ferritin nanoparticles (FeNPs), we successfully constructed two candidate FeNP vaccines by loading mammalian cells expressing NiV sG (residues 71-602, FeNP-sG) and Ghead (residues 182-602, FeNP-Ghead) onto E. coli-expressed FeNPs (FeNP-sG and FeNP-Ghead, respectively) through Spycatcher/Spytag technology. Compared with sG and Ghead alone, FeNP-sG and FeNP-Ghead elicited significant NiV specific neutralizing antibody levels and T-cell responses in mice, whereas the immune response in the FeNP-sG immunized group was greater than that in the FeNP-Ghead group. These results further demonstrate that sG possesses greater antigenicity than Ghead and that FeNPs can dramatically enhance immunogenicity. Furthermore, FeNP-sG provided 100% protection against NiV challenge in a hamster model when it was administered twice at a dose of 5 μg/per animal. Our study provides not only a promising candidate vaccine against NiV, but also a theoretical foundation for the design of a NiV immunogen for the development of novel strategies against NiV infection.

    Figure (1)  Reference (28) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return