. doi: 10.1016/j.virs.2024.09.007
Citation: Manman Wu, Yiwei Wang, Chuanjian Wu, Huang Huang, Xinyuan Zhou, Jun Wang, Sidong Xiong, Chunsheng Dong. A novel vesicular stomatitis virus armed with IL-2 mimic for oncolytic therapy .VIROLOGICA SINICA, 2024, 39(5) : 821-832.  http://dx.doi.org/10.1016/j.virs.2024.09.007

一种携有IL-2类似物的新型水疱性口炎病毒用于溶瘤治疗

cstr: 32224.14.j.virs.2024.09.007
  • 作为癌症免疫疗法的一种新载体,溶瘤病毒(Oncolytic virus, OV)正迅速为人们所知晓。越来越多的证据表明,OV能够改变肿瘤微环境的免疫状态,即将所谓的“冷”肿瘤转化为“热”肿瘤。OV可以改善机体抗肿瘤免疫,并通过联合各种免疫调节剂进一步增强抗肿瘤免疫应答。Neo-2/15是一种新合成的细胞因子,同时具有IL-2和IL-15的功能。然而,它缺乏结合IL-2受体α亚基(CD25)的位点,因此无法诱导Treg增殖。在本研究中,我们构建了一种表达Neo-2/15的重组水疱性口炎病毒(VSVM51R-Neo-2/15)。VSVM51R-Neo-2/15的瘤内递送有效地抑制了小鼠肿瘤的生长,没有引发临床上与IL-2相关的毒性反应。此外,VSVM51R-Neo-2/15的治疗增加了肿瘤中活化的 CD8+ T细胞的数量,但没有增加Treg细胞的数量。VSVM51R-Neo-2/15治疗后有更多的荷瘤小鼠存活下来,且存活的小鼠在再次挑战肿瘤细胞时表现出增强的抗肿瘤免疫保护。此外,OV和抗PD-L1免疫检查点抑制剂的联合治疗进一步增强了小鼠的抗肿瘤免疫反应。这些研究结果初步表明,VSVM51R-Neo-2/15可有效抑制肿瘤生长,提高对免疫检查点抑制剂的敏感性,为进一步的临床试验提供了有希望的初步尝试。

A novel vesicular stomatitis virus armed with IL-2 mimic for oncolytic therapy

  • Oncolytic virus (OV) is increasingly being recognized as a novel vector in cancer immunotherapy. Increasing evidence suggests that OV has the ability to change the immune status of tumor microenvironment, so called transformation of ‘cold’ tumors into ‘hot’ tumors. The improved anti-tumor immunity can be induced by OV and further enhanced through the combination of various immunomodulators. The Neo-2/15 is a newly de novo synthesized cytokine that functions as both IL-2 and IL-15. However, it specifically lacks the binding site of IL-2 receptor α subunit (CD25), therefore unable to induce the Treg proliferation. In present study, a recombinant vesicular stomatitis virus expressing the Neo-2/15 (VSVM51R-Neo-2/15) was generated. Intratumoral delivery of VSVM51R-Neo-2/15 efficiently inhibited tumor growth in mice without causing the IL-2-related toxicity previously observed in clinic. Moreover, treatment with VSVM51R-Neo-2/15 increased the number of activated CD8+ T cells but not Treg cells in tumors. More tumor-bearing mice were survival with VSVM51R-Neo-2/15 treatment, and the surviving mice displayed enhanced protection against tumor cell rechallenge due to the induced anti-tumor immunity. In addition, combination therapy of OV and anti-PD-L1 immune checkpoint inhibitors further enhanced the anti-tumor immune response. These findings suggest that our novel VSVM51R-Neo-2/15 can effectively inhibit the tumor growth and enhance the sensitivity to immune checkpoint inhibitors, providing promising attempts for further clinical trials.

  • 加载中
    1. ABBAS, A. K., TROTTA, E., D, R. S., MARSON, A. & BLUESTONE, J. A. 2018. Revisiting IL-2: Biology and therapeutic prospects. Sci Immunol, 3(25):eaat1482.

    2. ABIKO, K., MATSUMURA, N., HAMANISHI, J., HORIKAWA, N., MURAKAMI, R., YAMAGUCHI, K., YOSHIOKA, Y., BABA, T., KONISHI, I. & MANDAI, M. 2015. IFN-gamma from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J Cancer 112, 1501-1509.

    3. AHMADZADEH, M. & ROSENBERG, S. A. 2006. IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107, 2409-2414.

    4. AHMED, M., PUCKETT, S. & LYLES, D. S. 2010. Susceptibility of breast cancer cells to an oncolytic matrix (M) protein mutant of vesicular stomatitis virus. Cancer Gene Ther. 17, 883-892.

    5. AMEDEI, A., PRISCO, D. & MM, D. E. 2013. The use of cytokines and chemokines in the cancer immunotherapy. Recent Pat Anticancer Drug Discov. 8, 126-142.

    6. BISHNOI, S., TIWARI, R., GUPTA, S., BYRAREDDY, S. N. & NAYAK, D. 2018. Oncotargeting by Vesicular Stomatitis Virus (VSV): Advances in Cancer Therapy. Viruses 10, 90.

    7. BLATTMAN, J. N., GRAYSON, J. M., WHERRY, E. J., KAECH, S. M., SMITH, K. A. & AHMED, R. 2003. Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nat Med. 9, 540-547.

    8. BOYMAN, O. & SPRENT, J. 2012. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol. 12, 180-190.

    9. CARY, Z. D., WILLINGHAM, M. C. & LYLES, D. S. 2011. Oncolytic vesicular stomatitis virus induces apoptosis in U87 glioblastoma cells by a type II death receptor mechanism and induces cell death and tumor clearance in vivo. J Virol. 85, 5708-5717.

    10. CHAURASIYA, S., CHEN, N. G. & FONG, Y. 2018. Oncolytic viruses and immunity. Curr Opin Immunol. 51, 83-90.

    11. CHAURASIYA, S., YANG, A., KANG, S., LU, J., KIM, S. I., PARK, A. K., SIVANANDAM, V., ZHANG, Z., WOO, Y., WARNER, S. G. & FONG, Y. 2020. Oncolytic poxvirus CF33-hNIS-DeltaF14.5 favorably modulates tumor immune microenvironment and works synergistically with anti-PD-L1 antibody in a triple-negative breast cancer model. Oncoimmunology 9, 1729300.

    12. EBERT, O., SHINOZAKI, K., HUANG, T. G., SAVONTAUS, M. J., GARCIA-SASTRE, A. & WOO, S. L. 2003. Oncolytic vesicular stomatitis virus for treatment of orthotopic hepatocellular carcinoma in immune-competent rats. Cancer Res. 63, 3605-3611.

    13. GALIVO, F., DIAZ, R. M., THANARAJASINGAM, U., JEVREMOVIC, D., WONGTHIDA, P., THOMPSON, J., KOTTKE, T., BARBER, G. N., MELCHER, A. & VILE, R. G. 2010. Interference of CD40L-mediated tumor immunotherapy by oncolytic vesicular stomatitis virus. Hum Gene Ther. 21, 439-450.

    14. GORADEL, N. H., BAKER, A. T., ARASHKIA, A., EBRAHIMI, N., GHORGHANLU, S. & NEGAHDARI, B. 2021. Oncolytic virotherapy: Challenges and solutions. Curr Probl Cancer 45, 100639.

    15. GRAY, Z., TABARRAEI, A., MORADI, A. & KALANI, M. R. 2019. M51R and Delta-M51 matrix protein of the vesicular stomatitis virus induce apoptosis in colorectal cancer cells. Mol Biol Rep. 46, 3371-3379.

    16. HAMID, O., ISMAIL, R. & PUZANOV, I. 2020. Intratumoral Immunotherapy-Update 2019. Oncologist 25, e423-e438.

    17. HARRINGTON, K., FREEMAN, D. J., KELLY, B., HARPER, J. & SORIA, J. C. 2019. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov. 18, 689-706.

    18. JOHNSON, D. B., PUZANOV, I. & KELLEY, M. C. 2015. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 7, 611-619.

    19. LAMERS, C. H., SLEIJFER, S., VAN STEENBERGEN, S., VAN ELZAKKER, P., VAN KRIMPEN, B., GROOT, C., VULTO, A., DEN BAKKER, M., OOSTERWIJK, E., DEBETS, R. & GRATAMA, J. W. 2013. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 21, 904-912.

    20. LAWSON, N. D., STILLMAN, E. A., WHITT, M. A. & ROSE, J. K. 1995. Recombinant vesicular stomatitis viruses from DNA. Proc. Natl. Acad. Sci. USA 92, 4477-4481.

    21. LI, Y., LI, Y. F., SI, C. Z., ZHU, Y. H., JIN, Y., ZHU, T. T., LIU, M. Y. & LIU, G. Y. 2016. CCL21/IL21-armed oncolytic adenovirus enhances antitumor activity against TERT-positive tumor cells. Virus Res. 220, 172-178.

    22. LIN, H., WEI, S., HURT, E. M., GREEN, M. D., ZHAO, L., VATAN, L., SZELIGA, W., HERBST, R., HARMS, P. W., FECHER, L. A., VATS, P., CHINNAIYAN, A. M., LAO, C. D., LAWRENCE, T. S., WICHA, M., HAMANISHI, J., MANDAI, M., KRYCZEK, I. & ZOU, W. 2018. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest. 128, 805-815.

    23. MARABONDO, S. & KAUFMAN, H. L. 2017. High-dose interleukin-2 (IL-2) for the treatment of melanoma: safety considerations and future directions. Expert Opinion on Drug Safety 16, 1347-1357.

    24. MARKERT, J. M., CODY, J. J., PARKER, J. N., COLEMAN, J. M., PRICE, K. H., KERN, E. R., QUENELLE, D. C., LAKEMAN, A. D., SCHOEB, T. R., PALMER, C. A., CARTNER, S. C., GILLESPIE, G. Y. & WHITLEY, R. J. 2012. Preclinical evaluation of a genetically engineered herpes simplex virus expressing interleukin-12. J Virol. 86, 5304-5313.

    25. MICHOT, J. M., BIGENWALD, C., CHAMPIAT, S., COLLINS, M., CARBONNEL, F., POSTEL-VINAY, S., BERDELOU, A., VARGA, A., BAHLEDA, R., HOLLEBECQUE, A., MASSARD, C., FUEREA, A., RIBRAG, V., GAZZAH, A., ARMAND, J. P., AMELLAL, N., ANGEVIN, E., NOEL, N., BOUTROS, C., MATEUS, C., ROBERT, C., SORIA, J. C., MARABELLE, A. & LAMBOTTE, O. 2016. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 54, 139-148.

    26. MORGAN, D. A., RUSCETTI, F. W. & GALLO, R. 1976. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193, 1007-1008.

    27. NAKATAKE, M., KUWANO, N., KAITSURUMARU, E., KUROSAKI, H. & NAKAMURA, T. 2021. Fusogenic oncolytic vaccinia virus enhances systemic antitumor immune response by modulating the tumor microenvironment. Mol Ther. 29, 1782-1793.

    28. NISHIO, N. & DOTTI, G. 2015. Oncolytic virus expressing RANTES and IL-15 enhances function of CAR-modified T cells in solid tumors. Oncoimmunology 4, e988098.

    29. PARKER, B. S., RAUTELA, J. & HERTZOG, P. J. 2016. Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer 16, 131-144.

    30. PATEL, M. R., JACOBSON, B. A., JI, Y., DREES, J., TANG, S., XIONG, K., WANG, H., PRIGGE, J. E., DASH, A. S., KRATZKE, A. K., MESEV, E., ETCHISON, R., FEDERSPIEL, M. J., RUSSELL, S. J. & KRATZKE, R. A. 2015. Vesicular stomatitis virus expressing interferon-beta is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget 6, 33165-33177.

    31. PUZANOV, I., MILHEM, M. M., MINOR, D., HAMID, O., LI, A., CHEN, L., CHASTAIN, M., GORSKI, K. S., ANDERSON, A., CHOU, J., KAUFMAN, H. L. & ANDTBACKA, R. H. 2016. Talimogene Laherparepvec in Combination With Ipilimumab in Previously Untreated, Unresectable Stage IIIB-IV Melanoma. J Clin Oncol. 34, 2619-2626.

    32. QUIXABEIRA, D. C. A., ZAFAR, S., SANTOS, J. M., CERVERA-CARRASCON, V., HAVUNEN, R., KUDLING, T. V., BASNET, S., ANTTILA, M., KANERVA, A. & HEMMINKI, A. 2021. Oncolytic Adenovirus Coding for a Variant Interleukin 2 (vIL-2) Cytokine Re-Programs the Tumor Microenvironment and Confers Enhanced Tumor Control. Front Immunol. 12, 674400.

    33. RESTIFO, N. P., DUDLEY, M. E. & ROSENBERG, S. A. 2012. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 12, 269-281.

    34. ROSENBERG, S. A. 2001. Progress in human tumour immunology and immunotherapy. Nature 411, 380-384.

    35. ROSENBERG, S. A. & RESTIFO, N. P. 2015. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62-68.

    36. RUSSELL, L., PENG, K. W., RUSSELL, S. J. & DIAZ, R. M. 2019. Oncolytic Viruses: Priming Time for Cancer Immunotherapy. BioDrugs 33, 485-501.

    37. RUSSELL, S. J., PENG, K. W. & BELL, J. C. 2012. Oncolytic virotherapy. Nat Biotechnol. 30, 658-670.

    38. SHARMA, M., KHONG, H., FA'AK, F., BENTEBIBEL, S. E., JANSSEN, L. M. E., CHESSON, B. C., CREASY, C. A., FORGET, M. A., KAHN, L. M. S., PAZDRAK, B., KARKI, B., HAILEMICHAEL, Y., SINGH, M., VIANDEN, C., VENNAM, S., BHARADWAJ, U., TWEARDY, D. J., HAYMAKER, C., BERNATCHEZ, C., HUANG, S., RAJAPAKSHE, K., COARFA, C., HURWITZ, M. E., SZNOL, M., HWU, P., HOCH, U., ADDEPALLI, M., CHARYCH, D. H., ZALEVSKY, J., DIAB, A. & OVERWIJK, W. W. 2020. Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat Commun. 11, 661.

    39. SIEGEL, J. P. & PURI, R. K. 1991. Interleukin-2 toxicity. J Clin Oncol. 9, 694-704.

    40. SILVA, D. A., YU, S., ULGE, U. Y., SPANGLER, J. B., JUDE, K. M., LABAO-ALMEIDA, C., ALI, L. R., QUIJANO-RUBIO, A., RUTERBUSCH, M., LEUNG, I., BIARY, T., CROWLEY, S. J., MARCOS, E., WALKEY, C. D., WEITZNER, B. D., PARDO-AVILA, F., CASTELLANOS, J., CARTER, L., STEWART, L., RIDDELL, S. R., PEPPER, M., BERNARDES, G. J. L., DOUGAN, M., GARCIA, K. C. & BAKER, D. 2019. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565, 186-191.

    41. STOJDL, D. F., LICHTY, B., KNOWLES, S., MARIUS, R., ATKINS, H., SONENBERG, N. & BELL, J. C. 2000. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med. 6, 821-825.

    42. TOGASHI, Y., SHITARA, K. & NISHIKAWA, H. 2019. Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. Nat Rev Clin Oncol. 16, 356-371.

    43. TOPALIAN, S. L., DRAKE, C. G. & PARDOLL, D. M. 2015. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450-461.

    44. TUMEH, P. C., HARVIEW, C. L., YEARLEY, J. H., SHINTAKU, I. P., TAYLOR, E. J., ROBERT, L., CHMIELOWSKI, B., SPASIC, M., HENRY, G., CIOBANU, V., WEST, A. N., CARMONA, M., KIVORK, C., SEJA, E., CHERRY, G., GUTIERREZ, A. J., GROGAN, T. R., MATEUS, C., TOMASIC, G., GLASPY, J. A., EMERSON, R. O., ROBINS, H., PIERCE, R. H., ELASHOFF, D. A., ROBERT, C. & RIBAS, A. 2014. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568-571.

    45. UDAYAKUMAR, T. S., BETANCOURT, D. M., AHMAD, A., TAO, W., TOTIGER, T. M., PATEL, M., MARPLES, B., BARBER, G. & POLLACK, A. 2020. Radiation Attenuates Prostate Tumor Antiviral Responses to Vesicular Stomatitis Virus Containing IFNbeta, Resulting in Pronounced Antitumor Systemic Immune Responses. Mol Cancer Res. 18, 1232-1243.

    46. WANG, G., KANG, X., CHEN, K. S., JEHNG, T., JONES, L., CHEN, J., HUANG, X. F. & CHEN, S. Y. 2020. An engineered oncolytic virus expressing PD-L1 inhibitors activates tumor neoantigen-specific T cell responses. Nat Commun. 11, 1395.

    47. WANG, X., RICKERT, M. & GARCIA, K. C. 2005. Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science 310, 1159-1163.

    48. WU, C., WU, M., LIANG, M., XIONG, S. & DONG, C. 2019. A novel oncolytic virus engineered with PD-L1 scFv effectively inhibits tumor growth in a mouse model. Cell Mol Immunol. 16, 780-782.

    49. YLOSMAKI, E., YLOSMAKI, L., FUSCIELLO, M., MARTINS, B., AHOKAS, P., COJOC, H., UOTI, A., FEOLA, S., KREUTZMAN, A., RANKI, T., KARBACH, J., VIITALA, T., PRIHA, P., JAGER, E., PESONEN, S. & CERULLO, V. 2021. Characterization of a novel OX40 ligand and CD40 ligand-expressing oncolytic adenovirus used in the PeptiCRAd cancer vaccine platform. Mol Ther Oncolytics 20, 459-469.

  • 加载中
  • 10.1016j.virs.2024.09.007-ESM.docx

Figures(1)

Article Metrics

Article views(541) PDF downloads(3) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    A novel vesicular stomatitis virus armed with IL-2 mimic for oncolytic therapy

      Corresponding author: Xinyuan Zhou, xinyuanzhou@tmmu.edu.cn
      Corresponding author: Jun Wang, jwang79@suda.edu.cn
      Corresponding author: Sidong Xiong, sdxiong@suda.edu.cn
      Corresponding author: Chunsheng Dong, chunshengdong@suda.edu.cn
    • a. The Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China;
    • b. Department of Cardiology, No. 981 Hospital, PLA (People's Liberation Army of China), Chengde 067000, China;
    • c. Institute of Immunology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China

    Abstract: Oncolytic virus (OV) is increasingly being recognized as a novel vector in cancer immunotherapy. Increasing evidence suggests that OV has the ability to change the immune status of tumor microenvironment, so called transformation of ‘cold’ tumors into ‘hot’ tumors. The improved anti-tumor immunity can be induced by OV and further enhanced through the combination of various immunomodulators. The Neo-2/15 is a newly de novo synthesized cytokine that functions as both IL-2 and IL-15. However, it specifically lacks the binding site of IL-2 receptor α subunit (CD25), therefore unable to induce the Treg proliferation. In present study, a recombinant vesicular stomatitis virus expressing the Neo-2/15 (VSVM51R-Neo-2/15) was generated. Intratumoral delivery of VSVM51R-Neo-2/15 efficiently inhibited tumor growth in mice without causing the IL-2-related toxicity previously observed in clinic. Moreover, treatment with VSVM51R-Neo-2/15 increased the number of activated CD8+ T cells but not Treg cells in tumors. More tumor-bearing mice were survival with VSVM51R-Neo-2/15 treatment, and the surviving mice displayed enhanced protection against tumor cell rechallenge due to the induced anti-tumor immunity. In addition, combination therapy of OV and anti-PD-L1 immune checkpoint inhibitors further enhanced the anti-tumor immune response. These findings suggest that our novel VSVM51R-Neo-2/15 can effectively inhibit the tumor growth and enhance the sensitivity to immune checkpoint inhibitors, providing promising attempts for further clinical trials.

    Figure (1)  Reference (49) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return