. doi: 10.1016/j.virs.2024.09.010
Citation: Song-Kang Qin, Kuan-Hao Li, Ben-Jin Liu, Cun Cao, De-Bin Yu, Zhi-Gang Jiang, Jun Wang, Yu-Xin Han, Fang Wang, Ying-Lin Qi, Chao Sun, Li Yu, Ji-Tao Chang, Xin Yin. Efficient and robust reverse genetics system for bovine rotavirus generation and its application for antiviral screening .VIROLOGICA SINICA, 2024, 39(6) : 917-928.  http://dx.doi.org/10.1016/j.virs.2024.09.010

高效稳定的牛轮状病毒反向遗传系统的建立及其在抗病毒药物筛选中的应用

cstr: 32224.14.j.virs.2024.09.010
  • 过去,由于缺乏反向遗传(RG)系统,人们对轮状病毒复制和致病机制的理解受阻。自2017年以来,基于质粒的猿猴、人类和小鼠轮状病毒的反向遗传系统已经建立,但尚无方法被报道用于拯救牛轮状病毒(BRVs)。基于此,我们通过筛选稳定表达T7 RNA聚合酶的BHK-T7单克隆细胞,建立了BRV细胞培养适应株(BRV G10P [15] BLR)和临床分离株(BRV G6P[1] C73,G10P[11] HM26)的反向遗传系统。此外,通过该反向遗传系统,我们成功拯救了非结构蛋白3(NSP3)与ZsGreen融合的报告病毒BRV rC73/Zs,rHM26/Zs和rBLR/Zs。对基因组插入稳定性的分析表明,rC73/Zs和rBLR/Zs在7轮连续传代中均能复制并且遗传稳定,而rHM26/Zs只能稳定到第三代,表明BRV的基因片段可能影响外源基因的稳定传代。此外,我们利用重组报告病毒对1440种化合物进行高通量筛选,从中筛选到12种抗轮状病毒候选药物。总之,我们优化后的牛轮状病毒反向遗传系统既为深入了解BRV分子生物学提供了重要工具,也为今后开发针对牛轮状病毒的新型治疗药物和疫苗提供了手段。

Efficient and robust reverse genetics system for bovine rotavirus generation and its application for antiviral screening

  • Unveiling the molecular mechanisms underlying rotavirus replication and pathogenesis has been hampered by the lack of a reverse genetics (RG) system in the past. Since 2017, multiple plasmid-based RG systems for simian, human, and murine-like rotaviruses have been established. However, none of the described methods have supported the recovery of bovine rotaviruses (BRVs). Here, we established an optimized plasmid-based RG system for BRV culture-adapted strain (BRV G10P [15] BLR) and clinical isolates (BRV G6P [1] C73, G10P [11] HM26) based on a BHK-T7 cell clone stably expressing T7 polymerase. Furthermore, using this optimized RG system, we successfully rescued the reporter virus BRV rC73/Zs, rHM26/Zs and rBLR/Zs, harboring a genetically modified 1.8-kb segment 7 encoding full-length nonstructural protein 3 (NSP3) fused to ZsGreen, a 232-amino acid green fluorescent protein. Analysis of the stability of genomic insertions showed that the rC73/Zs and rBLR/Zs replicated efficiently and were genetically stable in seven rounds of serial passaging, while rHM26/Zs can be stabilized only up to the third generation, indicating that the BRV segment composition may influence the viral fitness. In addition, we adopted the recombinant reporter viruses for high-throughput screening application and discovered 12 candidates out of 1440 compounds with potential antiviral activities against rotavirus. In summary, this improved RG system of BRVs represents an important tool with great potential for understanding the molecular biology of BRV and facilitates the development of novel therapeutics and vaccines for BRV.

  • 加载中
    1. Al Mawly, J., Grinberg, A., Prattley, D., Moffat, J., Marshall, J., French, N., 2015. Risk factors for neonatal calf diarrhoea and enteropathogen shedding in New Zealand dairy farms. Vet. J. 203, 155-160.

    2. Arnold, M.M., Brownback, C.S., Taraporewala, Z.F., Patton, J.T., 2012. Rotavirus variant replicates efficiently although encoding an aberrant NSP3 that fails to induce nuclear localization of poly(A)-binding protein. J. Gen. Virol. 93, 1483-1494.

    3. Badaracco, A., Garaicoechea, L., Matthijnssens, J., Louge Uriarte, E., Odeon, A., Bilbao, G., Fernandez, F., Parra, G.I., Parreno, V., 2013. Phylogenetic analyses of typical bovine rotavirus genotypes G6, G10, P[5] and P[11] circulating in Argentinean beef and dairy herds. Infect. Genet. Evol. 18, 18-30.

    4. Badaracco, A., Garaicoechea, L., Rodriguez, D., Uriarte, E.L., Odeon, A., Bilbao, G., Galarza, R., Abdala, A., Fernandez, F., Parreno, V., 2012. Bovine rotavirus strains circulating in beef and dairy herds in Argentina from 2004 to 2010. Vet. Microbiol. 158, 394-399.

    5. Ballard, A., McCrae, M.A., Desselberger, U., 1992. Nucleotide sequences of normal and rearranged RNA segments 10 of human rotaviruses. J. Gen. Virol. 73, 633-638.

    6. Collins, P.J., Mulherin, E., Cashman, O., Lennon, G., Gunn, L., O'Shea, H., Fanning, S., 2014. Detection and characterisation of bovine rotavirus in Ireland from 2006-2008. Ir. Vet. J. 67, 13.

    7. Cowley, D., Donato, C.M., Roczo-Farkas, S., Kirkwood, C.D., 2013. Novel G10P[14] rotavirus strain, northern territory, Australia. Emerg. Infect. Dis. 19, 1324-1327.

    8. Desselberger, U., 2020. What are the limits of the packaging capacity for genomic RNA in the cores of rotaviruses and of other members of the Reoviridae? Virus Res. 276, 197822.

    9. Diebold, O., Gonzalez, V., Venditti, L., Sharp, C., Blake, R.A., Tan, W.S., Stevens, J., Caddy, S., Digard, P., Borodavka, A., Gaunt, E., 2022. Using species a rotavirus reverse genetics to engineer chimeric viruses expressing SARS-CoV-2 spike epitopes. J. Virol. 96, e0048822.

    10. Elkady, G., Zhu, J., Peng, Q., Chen, M., Liu, X., Chen, Y., Hu, C., Chen, H., Guo, A., 2021. Isolation and whole protein characterization of species A and B bovine rotaviruses from Chinese calves. Infect. Genet. Evol. 89, 104715.

    11. Falkenhagen, A., Patzina-Mehling, C., Gadicherla, A.K., Strydom, A., O'Neill, H.G., Johne, R., 2020. Generation of simian rotavirus reassortants with VP4- and VP7-encoding genome segments from human strains circulating in Africa using reverse genetics. Viruses. 12, 201.

    12. Falkenhagen, A., Patzina-Mehling, C., Ruckner, A., Vahlenkamp, T.W., Johne, R., 2019. Generation of simian rotavirus reassortants with diverse VP4 genes using reverse genetics. J. Gen. Virol. 100, 1595-1604.

    13. Fritzen, J.T.T., Oliveira, M.V., Lorenzetti, E., Miyabe, F.M., Viziack, M.P., Rodrigues, C.A., Ayres, H., Alfieri, A.F., Alfieri, A.A., 2019. Longitudinal surveillance of rotavirus A genotypes circulating in a high milk yield dairy cattle herd after the introduction of a rotavirus vaccine. Vet. Microbiol. 230, 260-264.

    14. Gault, E., Schnepf, N., Poncet, D., Servant, A., Teran, S., Garbarg-Chenon, A., 2001. A human rotavirus with rearranged genes 7 and 11 encodes a modified NSP3 protein and suggests an additional mechanism for gene rearrangement. J. Virol. 75, 7305-7314.

    15. Hundley, F., Biryahwaho, B., Gow, M., Desselberger, U., 1985. Genome rearrangements of bovine rotavirus after serial passage at high multiplicity of infection. Virology. 143, 88-103.

    16. Jamnikar-Ciglenecki, U., Kuhar, U., Sturm, S., Kirbis, A., Racki, N., Steyer, A., 2016. The first detection and whole genome characterization of the G6P[15] group A rotavirus strain from roe deer. Vet. Microbiol. 191, 52-59.

    17. Johne, R., Reetz, J., Kaufer, B.B., Trojnar, E., 2016. Generation of an avian-mammalian rotavirus reassortant by using a helper virus-dependent reverse genetics system. J. Virol. 90, 1439-1443.

    18. Kanai, Y., Kawagishi, T., Nouda, R., Onishi, M., Pannacha, P., Nurdin, J.A., Nomura, K., Matsuura, Y., Kobayashi, T., 2019. Development of stable rotavirus reporter expression systems. J. Virol. 93, e01774-18.

    19. Kanai, Y., Komoto, S., Kawagishi, T., Nouda, R., Nagasawa, N., Onishi, M., Matsuura, Y., Taniguchi, K., Kobayashi, T., 2017. Entirely plasmid-based reverse genetics system for rotaviruses. Proc. Natl. Acad. Sci. U. S. A 114, 2349-2354.

    20. Kawagishi, T., Nurdin, J.A., Onishi, M., Nouda, R., Kanai, Y., Tajima, T., Ushijima, H., Kobayashi, T., 2020. Reverse genetics system for a human group A rotavirus. J. Virol. 94, e00963-19.

    21. Kojima, K., Taniguchi, K., Urasawa, T., Urasawa, S., 1996. Sequence analysis of normal and rearranged NSP5 genes from human rotavirus strains isolated in nature: implications for the occurrence of the rearrangement at the step of plus strand synthesis. Virology. 224, 446-452.

    22. Komoto, S., Fukuda, S., Ide, T., Ito, N., Sugiyama, M., Yoshikawa, T., Murata, T., Taniguchi, K., 2018. Generation of recombinant rotaviruses expressing fluorescent proteins by using an optimized reverse genetics system. J. Virol. 92, e00588-18.

    23. Komoto, S., Fukuda, S., Kugita, M., Hatazawa, R., Koyama, C., Katayama, K., Murata, T., Taniguchi, K., 2019. Generation of infectious recombinant human rotaviruses from just 11 cloned cDNAs encoding the rotavirus genome. J. Virol. 93, e02207-18.

    24. Komoto, S., Kanai, Y., Fukuda, S., Kugita, M., Kawagishi, T., Ito, N., Sugiyama, M., Matsuura, Y., Kobayashi, T., Taniguchi, K., 2017. Reverse genetics system demonstrates that rotavirus nonstructural protein NSP6 is not essential for viral replication in cell culture. J. Virol. 91, e00695-17.

    25. Komoto, S., Sasaki, J., Taniguchi, K., 2006. Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus. Proc. Natl. Acad. Sci. U. S. A 103, 4646-4651.

    26. Komoto, S., Taniguchi, K., 2014. [Rotaviruses]. Uirusu 64, 179-190.

    27. Liu, X., Yan, N., Yue, H., Wang, Y., Zhang, B., Tang, C., 2021. Detection and molecular characteristics of bovine rotavirus A in dairy calves in China. J. Vet. Sci. 22, e69.

    28. Maan, S., Rao, S., Maan, N.S., Anthony, S.J., Attoui, H., Samuel, A.R., Mertens, P.P.C., 2007. Rapid cDNA synthesis and sequencing techniques for the genetic study of bluetongue and other dsRNA viruses. J. Virol. Methods 143, 132-139.

    29. Mohamed, F.F., Mansour, S.M.G., El-Araby, I.E., Mor, S.K., Goyal, S.M., 2017. Molecular detection of enteric viruses from diarrheic calves in Egypt. Arch. Virol. 162, 129-137.

    30. Navarro, A., Trask, S.D., Patton, J.T., 2013. Generation of genetically stable recombinant rotaviruses containing novel genome rearrangements and heterologous sequences by reverse genetics. J. Virol. 87, 6211-6220.

    31. Papp, H., Laszlo, B., Jakab, F., Ganesh, B., De Grazia, S., Matthijnssens, J., Ciarlet, M., Martella, V., Banyai, K., 2013. Review of group A rotavirus strains reported in swine and cattle. Vet. Microbiol. 165, 190-199.

    32. Patton, J.T., Taraporewala, Z., Chen, D., Chizhikov, V., Jones, M., Elhelu, A., Collins, M., Kearney, K., Wagner, M., Hoshino, Y. et al., 2001. Effect of intragenic rearrangement and changes in the 3' consensus sequence on NSP1 expression and rotavirus replication. J. Virol. 75, 2076-2086.

    33. Philip, A.A., Dai, J., Katen, S.P., Patton, J.T., 2020. Simplified reverse genetics method to recover recombinant rotaviruses expressing reporter proteins. J. Vis. Exp. 17.

    34. Philip, A.A., Herrin, B.E., Garcia, M.L., Abad, A.T., Katen, S.P., Patton, J.T., 2019a. Collection of recombinant rotaviruses expressing fluorescent reporter proteins. Microbiol. Resour. Announc. 8, e00523-19.

    35. Philip, A.A., Patton, J.T., 2022. Generation of recombinant rotaviruses expressing human norovirus capsid proteins. J. Virol. 96, e0126222.

    36. Philip, A.A., Patton, J.T., 2020. Expression of separate heterologous proteins from the rotavirus NSP3 genome segment using a translational 2A stop-restart element. J. Virol. 94, e00959-20.

    37. Philip, A.A., Perry, J.L., Eaton, H.E., Shmulevitz, M., Hyser, J.M., Patton, J.T., 2019b. Generation of recombinant rotavirus expressing NSP3-UnaG fusion protein by a simplified reverse genetics system. J. Virol. 93, e01616-19.

    38. Pourasgari, F., Kaplon, J., Karimi-Naghlani, S., Fremy, C., Otarod, V., Ambert-Balay, K., Mirjalili, A., Pothier, P., 2016. The molecular epidemiology of bovine rotaviruses circulating in Iran: a two-year study. Arch. Virol. 161, 3483-3494.

    39. Riva, L., Goellner, S., Biering, S.B., Huang, C.-T., Rubanov, A.N., Haselmann, U., Warnes, C.M., De Jesus, P.D., Martin-Sancho, L., Terskikh, A.V. et al., 2021. The compound SBI-0090799 inhibits Zika virus infection by blocking De Novo formation of the membranous replication compartment. J. Virol. 95, e0099621.

    40. Sanchez-Tacuba, L., Feng, N., Meade, N.J., Mellits, K.H., Jais, P.H., Yasukawa, L.L., Resch, T.K., Jiang, B., Lopez, S., Ding, S. et al., 2020. An optimized reverse genetics system suitable for efficient recovery of simian, human, and murine-like rotaviruses. J. Virol. 94, e01294-20.

    41. Shen, S., Burke, B., Desselberger, U., 1994. Rearrangement of the VP6 gene of a group A rotavirus in combination with a point mutation affecting trimer stability. J. Virol. 68, 1682-1688.

    42. Trask, S.D., Taraporewala, Z.F., Boehme, K.W., Dermody, T.S., Patton, J.T., 2010. Dual selection mechanisms drive efficient single-gene reverse genetics for rotavirus. Proc. Natl. Acad. Sci. U. S. A 107, 18652-18657.

    43. Troupin, C., Dehee, A., Schnuriger, A., Vende, P., Poncet, D., Garbarg-Chenon, A., 2010. Rearranged genomic RNA segments offer a new approach to the reverse genetics of rotaviruses. J. Virol. 84, 6711-6719.

    44. Wei, S., Gong, Z., Che, T., Guli, A., Tian, F., 2013. Genotyping of calves rotavirus in China by reverse transcription polymerase chain reaction. J. Virol Methods 189, 36-40.

    45. Yan, N., Li, R., Wang, Y., Zhang, B., Yue, H., Tang, C., 2020. High prevalence and genomic characteristics of G6P[1] Bovine Rotavirus A in yak in China. J. Gen. Virol. 101, 701-711.

    46. Yin, Y., Wang, Y., Dang, W., Xu, L., Su, J., Zhou, X., Wang, W., Felczak, K., van der Laan, L.J.W., Pankiewicz, K.W. et al., 2016. Mycophenolic acid potently inhibits rotavirus infection with a high barrier to resistance development. Antivir. Res. 133, 41-49.

  • 加载中
  • 10.1016j.virs.2024.09.010-ESM3.docx
    10.1016j.virs.2024.09.010-ESM4.xlsx
    10.1016j.virs.2024.09.010-ESM1.jpg
    10.1016j.virs.2024.09.010-ESM2.jpg
    10.1016j.virs.2024.09.010-ESM5.xlsx

Figures(1)

Article Metrics

Article views(400) PDF downloads(6) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Efficient and robust reverse genetics system for bovine rotavirus generation and its application for antiviral screening

      Corresponding author: Ji-Tao Chang, changjitao@caas.cn
      Corresponding author: Xin Yin, yinxin@caas.cn
    • a. State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, China;
    • b. Laboratory of Molecular and Cellular Epigenetics, Grappe Interdisciplinaire de Génoprotéomique Appliquée, University of Liège, 4000 Liège, Belgium; Molecular Biology, Teaching and Research Center, 5030 Gembloux, Belgium;
    • c. Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji, 831100, China

    Abstract: Unveiling the molecular mechanisms underlying rotavirus replication and pathogenesis has been hampered by the lack of a reverse genetics (RG) system in the past. Since 2017, multiple plasmid-based RG systems for simian, human, and murine-like rotaviruses have been established. However, none of the described methods have supported the recovery of bovine rotaviruses (BRVs). Here, we established an optimized plasmid-based RG system for BRV culture-adapted strain (BRV G10P [15] BLR) and clinical isolates (BRV G6P [1] C73, G10P [11] HM26) based on a BHK-T7 cell clone stably expressing T7 polymerase. Furthermore, using this optimized RG system, we successfully rescued the reporter virus BRV rC73/Zs, rHM26/Zs and rBLR/Zs, harboring a genetically modified 1.8-kb segment 7 encoding full-length nonstructural protein 3 (NSP3) fused to ZsGreen, a 232-amino acid green fluorescent protein. Analysis of the stability of genomic insertions showed that the rC73/Zs and rBLR/Zs replicated efficiently and were genetically stable in seven rounds of serial passaging, while rHM26/Zs can be stabilized only up to the third generation, indicating that the BRV segment composition may influence the viral fitness. In addition, we adopted the recombinant reporter viruses for high-throughput screening application and discovered 12 candidates out of 1440 compounds with potential antiviral activities against rotavirus. In summary, this improved RG system of BRVs represents an important tool with great potential for understanding the molecular biology of BRV and facilitates the development of novel therapeutics and vaccines for BRV.

    Figure (1)  Reference (46) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return