. doi: 10.1016/j.virs.2024.10.001
Citation: Jingwen Ai, Jiaxin Zhou, Yang Li, Feng Sun, Shijia Ge, Haocheng Zhang, Yanpeng Wu, Yan Wang, Yilin Zhang, Hongyu Wang, Jianpeng Cai, Xian Zhou, Sen Wang, Rong Li, Zhen Feng, Xiangyanyu Xu, Xuemei Yan, Yuchen Zhao, Juanjuan Zhang, Hongjie Yu, Wenhong Zhang. Viral load dynamics in asymptomatic and symptomatic patients during Omicron BA.2 outbreak in Shanghai, China, 2022: A longitudinal cohort study .VIROLOGICA SINICA, 2024, 39(6) : 851-859.  http://dx.doi.org/10.1016/j.virs.2024.10.001

2022年中国上海Omicron BA.2疫情期间无症状和有症状患者的病毒载量动态变化:一项纵向队列研究

cstr: 32224.14.j.virs.2024.10.001
  • SARS-CoV-2病毒,尤其是Omicron BA.2变异株在2022年导致上海的大规模疫情暴发。然而,Omicron感染后不同临床严重程度病人的病毒载量变化尚不清楚。本研究通过前瞻性队列研究纳入了2022年3月23日至5月15日期间中上海三家医院收治的48,830名COVID-19住院患者。我们利用RT-PCR的循环阈值(Ct 值)作为病毒载量的替代指标进行了系统性核酸检测。我们按临床严重程度分析了病毒排出的动力学特征,并确定了相关风险因素。研究共包含31.06%的无症状病例、67.66%的轻中度病例、1.00%的重症病例和0.29%的危重及死亡病例。入院时,57%的患者检测结果为阳性,病毒载量峰值出现在第4天(Ct值中位数为27.5),随后开始下降,平均病毒排出时间(VST)为6.1天(四分位距为4.0-8.8天)。尽管病毒载量因年龄和临床严重程度不同而存在差异,但Ct值峰值出现的时间相近。未接种疫苗、年龄超过60岁以及患有高血压、肾病(透析和肾移植)、神经系统疾病、风湿病和精神疾病的患者峰值病毒载量升高和VST延长。无症状病例在检测后6天内的具有传染性的概率为40%,轻中度和重症病例的症状消退后仍具有传染性的概率分别为27%和>50%。这些发现表明,初始Ct值可作为严重预后的预测指标。未接种疫苗且患有特定并发症的老年人是高病毒载量和较长病毒排出时间的高风险群体。

Viral load dynamics in asymptomatic and symptomatic patients during Omicron BA.2 outbreak in Shanghai, China, 2022: A longitudinal cohort study

  • The SARS-CoV-2 virus, particularly the Omicron BA.2 variant, led to a significant surge in Shanghai, 2022. However, the viral load dynamic in Omicron infections with varying clinical severities remain unclear. This prospective cohort included 48,830 hospitalized coronavirus disease 2019 (COVID-19) patients across three hospitals in Shanghai, China, between 23 March and 15 May, 2022. Systematic nucleic acid testing was performed using RT-PCR Cycle threshold (Ct) value as a proxy of viral load. We analyzed the kinetic characteristics of viral shedding by clinical severity and identified associated risk factors. The study comprised 31.06% asymptomatic cases, 67.66% mild-moderate cases, 1.00% severe cases, 0.29% critical and fatal cases. Upon admission, 57% of patients tested positive, with peak viral load observed at 4 days (median Ct value 27.5), followed by a decrease and an average viral shedding time (VST) of 6.1 days (Interquartile range, 4.0–8.8 days). Although viral load exhibited variation by age and clinical severity, peak Ct values occurred at similar times. Unvaccinated status, age exceeding 60, and comorbidities including hypertension, renal issues kidney dialysis and kidney transplantation, neurological disorders, rheumatism, and psychotic conditions were found to correlate with elevated peak viral load and extended VST. Asymptomatic cases demonstrated a 40% likelihood of contagiousness within 6 days of detection, while mild-moderate and severe cases exhibited post-symptom resolution infectious probabilities of 27% and over 50%, respectively. These findings revealed that the initial Ct values serve as a predictive indicator of severe outcomes. Unvaccinated elderly individuals with particular comorbidities are at high-risk for elevated viral load and prolonged VST.

  • 加载中
    1. Ao, Y., Li, J., Wei, Z., Wang, Z., Tian, H., Qiu, Y., Fu, X., Ma, W., Li, L., Zeng, M.,Xu, J., 2022. Clinical and virological characteristics of SARS-CoV-2 Omicron BA.2.2 variant outbreaks during April to May, 2022, Shanghai, China. J. Infect., 85, 573-607.

    2. Bartleson, J.M., Radenkovic, D., Covarrubias, A.J., Furman, D., Winer, D.A.,Verdin, E., 2021. SARS-CoV-2, COVID-19 and the aging immune system. Nature Aging, 1, 769-782.

    3. Bouton, T.C., Atarere, J., Turcinovic, J., Seitz, S., Sher-Jan, C., Gilbert, M., White, L., Zhou, Z., Hossain, M.M., Overbeck, V., Doucette-Stamm, L., Platt, J., Landsberg, H.E., Hamer, D.H., Klapperich, C., Jacobson, K.R.,Connor, J.H., 2023. Viral dynamics of Omicron and Delta SARS-CoV-2 variants with implications for timing of release from isolation: a longitudinal cohort study. Clin. Infect. Dis., 76, e227-e233.

    4. Chen, Z., Deng, X., Fang, L., Sun, K., Wu, Y., Che, T., Zou, J., Cai, J., Liu, H., Wang, Y., Wang, T., Tian, Y., Zheng, N., Yan, X., Sun, R., Xu, X., Zhou, X., Ge, S., Liang, Y., Yi, L., Yang, J., Zhang, J., Ajelli, M.,Yu, H., 2022. Epidemiological characteristics and transmission dynamics of the outbreak caused by the SARS-CoV-2 Omicron variant in Shanghai, China: a descriptive study. Lancet Reg Health West Pac, 29, 100592.

    5. Choi, G., Lim, A.Y., Choi, S., Park, K., Lee, S.Y.,Kim, J.H., 2022. Viral shedding patterns of the symptomatic SARS-CoV-2 infection according to virus-type dominant periods and vaccination status in Gyeonggi Province, Korea. Epidemiol Health, 10.4178/epih.e2023008, e2023008.

    6. El Karoui, K.,De Vriese, A.S., 2022. COVID-19 in dialysis: clinical impact, immune response, prevention, and treatment. Kidney Int., 101, 883-894.

    7. Ergoren, M.C., Komurcu, K., Tuncel, G., Akan, G., Ozverel, C.S., Dalkan, C., Kalayci, M.,Sanlidag, T., 2022. Impact of SARS-CoV-2 Delta and Omicron variants on viral burden and cycle threshold in BNT162b2-vaccinated 12-18 years group. Braz. J. Microbiol., 53, 1937-1940.

    8. Fall, A., Eldesouki, R.E., Sachithanandham, J., Morris, C.P., Norton, J.M., Gaston, D.C., Forman, M., Abdullah, O., Gallagher, N., Li, M., Swanson, N.J., Pekosz, A., Klein, E.Y.,Mostafa, H.H., 2022. The displacement of the SARS-CoV-2 variant Delta with Omicron: an investigation of hospital admissions and upper respiratory viral loads. EBioMedicine, 79, 104008.

    9. Fryer, H.R., Golubchik, T., Hall, M., Fraser, C., Hinch, R., Ferretti, L., Thomson, L., Nurtay, A., Pellis, L., House, T., Macintyre-Cockett, G., Trebes, A., Buck, D., Piazza, P., Green, A., Lonie, L.J., Smith, D., Bashton, M., Crown, M., Nelson, A., Mccann, C.M., Adnan Tariq, M., Elstob, C.J., Nunes Dos Santos, R., Richards, Z., Xhang, X., Hawley, J., Lee, M.R., Carrillo-Barragan, P., Chapman, I., Harthern-Flint, S., Consortium, C.-G.U., Bonsall, D.,Lythgoe, K.A., 2023. Viral burden is associated with age, vaccination, and viral variant in a population-representative study of SARS-CoV-2 that accounts for time-since-infection-related sampling bias. PLoS Pathog., 19, e101146.

    10. Hay, J.A., Kissler, S.M., Fauver, J.R., Mack, C., Tai, C.G., Samant, R.M., Connolly, S., Anderson, D.J., Khullar, G., Mackay, M., Patel, M., Kelly, S., Manhertz, A., Eiter, I., Salgado, D., Baker, T., Howard, B., Dudley, J.T., Mason, C.E., Nair, M., Huang, Y., Difiori, J., Ho, D.D., Grubaugh, N.D.,Grad, Y.H., 2022. Quantifying the impact of immune history and variant on SARS-CoV-2 viral kinetics and infection rebound: a retrospective cohort study. Elife, 11, e81849.

    11. Jang, J., Jeong, H., Kim, B.H., An, S., Yang, H.R.,Kim, S., 2023. Vaccine effectiveness in symptom and viral load mitigation in COVID-19 breakthrough infections in South Korea. PLoS One, 18, e0290154.

    12. Kandel, C., Lee, Y., Taylor, M., Llanes, A., Mccready, J., Crowl, G., Powis, J., Li, A.X., Shigayeva, A., Yip, L., Katz, K., Kozak, R., Mubareka, S.,Mcgeer, A., 2022. Viral dynamics of the SARS-CoV-2 Omicron Variant among household contacts with 2 or 3 COVID-19 vaccine doses. J. Infect., 85, 666-670.

    13. Kaseb, A.O., Mohamed, Y.I., Malek, A.E., Raad, Ii, Altameemi, L., Li, D., Kaseb, O.A., Kaseb, S.A., Selim, A.,Ma, Q., 2021. The impact of angiotensin-converting enzyme 2 (ACE2) expression on the incidence and severity of COVID-19 infection. Pathogens, 10, 379.

    14. Li, H., Gao, M., You, H., Zhang, P., Pan, Y., Li, N., Qin, L., Wang, H., Li, D., Li, Y., Qiao, H., Gu, L., Xu, S., Guo, W., Wang, N., Liu, C., Gao, P., Niu, J., Cao, J.,Zheng, Y., 2023. Association of nirmatrelvir/ritonavir treatment on upper respiratory severe acute respiratory syndrome coronavirus 2 reverse transcription-polymerase chain reaction (SARS-Cov-2 RT-PCR) negative conversion rates among high-risk patients with coronavirus disease 2019 (COVID-19). Clin. Infect. Dis., 76, e148-e154.

    15. Lin, Y., Wu, P., Tsang, T.K., Wong, J.Y., Lau, E.H.Y., Yang, B., Leung, G.M.,Cowling, B.J., 2023. Viral kinetics of SARS-CoV-2 following onset of COVID-19 in symptomatic patients infected with the ancestral strain and omicron BA.2 in Hong Kong: a retrospective observational study. Lancet Microbe, 4, e722-e731.

    16. Ling, Y., Lu, G., Liu, F., Tan, Y., Xu, X., Wei, D., Xu, J., Wang, S., Yu, S., Jiang, F., Zhang, X., Chen, S., Liu Y., Lu J., Zhan H., Yuan W., Li X., Kang H., Li H., Chen Y., Cheng L., Sun X., Zheng H., Wang W., Dai E., Li Y.,2023. Inactivated SARS-CoV-2 booster vaccine enhanced immune responses in patients with chronic liver diseases. Virol. Sin., 38, 723-734.

    17. Liu, J., Pan, X., Zhang, S., Li, M., Ma, K., Fan, C., Lv, Y., Guan, X., Yang, Y., Ye, X., Deng, X., Wang, Y., Qin, L., Xia, Z., Ge, Z., Zhou, Q., Zhang, X., Ling, Y., Qi, T., Wen, Z., Huang, S., Zhang, L., Wang, T., Liu, Y., Huang, Y., Li, W., Du, H., Chen, Y., Xu, Y., Zhao, Q., Zhao, R., Annane, D., Qu, J.,Chen, D., 2023. Efficacy and safety of Paxlovid in severe adult patients with SARS-Cov-2 infection: a multicenter randomized controlled study. The Lancet Regional Health-Western Pacific, 33, 100694.

    18. Liu, W., Gong, F., Zheng, X., Pei, L., Wang, X., Yang, S., Zhao, S., Yang, Z., Lin, J., Jing, F., Shang, H., Bi, Y., Wei, D., Chen, E.,Chen, Y., 2023. Factors associated with prolonged viral shedding of SARS-CoV-2 Omicron variant infection in Shanghai: A multicenter, retrospective, observational study. J. Med. Virol., 95, e29342.

    19. Liu, Y., Yan, L.M., Wan, L., Xiang, T.X., Le, A., Liu, J.M., Peiris, M., Poon, L.L.M.,Zhang, W., 2020. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect. Dis., 20, 656-657.

    20. Munker, D., Osterman, A., Stubbe, H., Muenchhoff, M., Veit, T., Weinberger, T., Barnikel, M., Mumm, J.N., Milger, K., Khatamzas, E., Klauss, S., Scherer, C., Hellmuth, J.C., Giessen-Jung, C., Zoller, M., Herold, T., Stecher, S., De Toni, E.N., Schulz, C., Kneidinger, N., Keppler, O.T., Behr, J., Mayerle, J.,Munker, S., 2021. Dynamics of SARS-CoV-2 shedding in the respiratory tract depends on the severity of disease in COVID-19 patients. Eur. Respir. J., 58.

    21. Okita, Y., Morita, T.,Kumanogoh, A., 2022. Duration of SARS-CoV-2 RNA positivity from various specimens and clinical characteristics in patients with COVID-19: a systematic review and meta-analysis. Inflamm. Regen., 42, 16.

    22. Ong, S.W.X., Chiew, C.J., Ang, L.W., Mak, T.M., Cui, L., Toh, M., Lim, Y.D., Lee, P.H., Lee, T.H., Chia, P.Y., Maurer-Stroh, S., Lin, R.T.P., Leo, Y.S., Lee, V.J., Lye, D.C.,Young, B.E., 2022. Clinical and virological features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern: a retrospective cohort study comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta). Clin. Infect. Dis., 75, e1128-e1136.

    23. Puhach, O., Adea, K., Hulo, N., Sattonnet, P., Genecand, C., Iten, A., Jacquerioz, F., Kaiser, L., Vetter, P., Eckerle, I.,Meyer, B., 2022. Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2. Nat. Med., 28, 1491-1500.

    24. Puhach, O., Meyer, B.,Eckerle, I., 2023. SARS-CoV-2 viral load and shedding kinetics. Nat. Rev. Microbiol.,21, 147-161.

    25. Pujadas, E., Chaudhry, F., Mcbride, R., Richter, F., Zhao, S., Wajnberg, A., Nadkarni, G., Glicksberg, B.S., Houldsworth, J.,Cordon-Cardo, C., 2020. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Respir. Med., 8, e70.

    26. Qassim, S.H., Chemaitelly, H., Ayoub, H.H., Almukdad, S., Tang, P., Hasan, M.R., Yassine, H.M., Al-Khatib, H.A., Smatti, M.K., Abdul-Rahim, H.F., Nasrallah, G.K., Al-Kuwari, M.G., Al-Khal, A., Coyle, P., Kaleeckal, A.H., Shaik, R.M., Latif, A.N., Al-Kuwari, E., Jeremijenko, A., Butt, A.A., Bertollini, R., Al-Romaihi, H.E., Al-Thani, M.H.,Abu-Raddad, L.J., 2022. Effects of BA.1/BA.2 subvariant, vaccination and prior infection on infectiousness of SARS-CoV-2 omicron infections. J. Trav. Med., 29.

    27. Ravindran, S., Gubbay, J.B., Cronin, K., Sullivan, A., Zygmunt, A., Johnson, K., Buchan, S.A.,Parpia, A.S., 2023. Association between cycle threshold value and vaccination status among severe acute respiratory syndrome coronavirus 2 omicron variant cases in Ontario, Canada, in December 2021. Open Forum Infect. Dis., 10, ofad282.

    28. Selvavinayagam, S.T., Yong, Y.K., Joseph, N., Hemashree, K., Tan, H.Y., Zhang, Y., Rajeshkumar, M., Kumaresan, A., Kalpana, R., Kalaivani, V., Monika, A.V.D., Suvaithenamudhan, S., Kannan, M., Murugesan, A., Narayanasamy, K., Palani, S., Larsson, M., Shankar, E.M.,Raju, S., 2022. Low SARS-CoV-2 viral load among vaccinated individuals infected with Delta B.1.617.2 and Omicron BA.1.1.529 but not with Omicron BA.1.1 and BA.2 variants. Front. Public Health, 10, 1018399.

    29. Singanayagam, A., Hakki, S., Dunning, J., Madon, K.J., Crone, M.A., Koycheva, A., Derqui-Fernandez, N., Barnett, J.L., Whitfield, M.G., Varro, R., Charlett, A., Kundu, R., Fenn, J., Cutajar, J., Quinn, V., Conibear, E., Barclay, W., Freemont, P.S., Taylor, G.P., Ahmad, S., Zambon, M., Ferguson, N.M.,Lalvani, A., 2022. Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: a prospective, longitudinal, cohort study. Lancet Infect. Dis., 22, 183-195.

    30. Paul SP, Chopra J, Dey I. Dental caries :a disease which needs attention- correspondence. Indian J Pediatr 2018; 85:327-328.

    31. BaniHani A, Deery C, Toumba J, Munyombwe T, Duggal M. The impact of dental caries and its treatment by conventional or biological approaches on the oral health-related quality of life of children and carers. Int J Paediatr Dent 2018; 28:266-276.

    32. Rebelo B, Rebelo M, Pereira V, Quadros N, Vettore V. Does oral health influence school performance and school attendance: a systematic review and meta-analysis. Int J Paediatr Dent 2019; 29:138-148.

    33. Kale S, Kakodkar P, Shetiya S, Abdulkader R. Prevalence of dental caries among childrenaged5 15 years from 9 countries in the Eastern Mediterranean region:ameta-analysis. East Mediterr Health J 2020; 26:726-735.

    34. Pecci-Lloret MR, Pecci-Lloret MP, Rodriguez-Lozano FJ. Special care patients and caries prevalence in permanent dentition :A systematic review. Int J Environ Res Publ Health 2022; 19:15194.

    35. Abdel Fattah MA, Barghouth MH, Wassel MO, Deraz OH. Epidemiology of dental caries in permanent dentition :evidence from a population-based survey in Egypt. BMC Publ Health 2022; 22:24-38.

    36. Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontal 2000 2021; 86:32-56.

    37. Javed S, Zakirulla M, Baig RU, Asif SM, Meer AB. Development of artificial neural network model for prediction of post-streptococcus mutans in dental caries. Comput Methods Progr Biomed 2020; 186:105198.

    38. Bud ES, Bica CI, Stoica OE, Vlasa A, Eşian D. Observational study regarding the relationship between nutritional status, dental caries, mutans streptococci, and lactobacillus bacterial colonies. Int J Environ Res Publ Health 2021; 18:3551.

    39. Nguyen M, Dinis M, Lux R, Shi W, Tran NC. Correlation between streptococcus mutans levels in dental plaque and saliva of children. J Oral Sci 2022; 64:290-293.

    40. Salh A, Risan M, Jasim H. Biochemical characteristics and antibiotics susceptibility of streptococcus mutans isolates from dental caries in Baghdad city. Int J Adv Biol Biomed Res 2022; 10:32-43.

    41. Machiulskiene V, Campus G, Carvalho JC, Dige I. Terminology of dental caries and dental caries management: consensus report of a work shop organized by and cariology research group of IADR. Caries Res 2020; 54:7-14.

    42. Sajadi FS, Farrokhi S, Sharifi M, Saffari F, Sepehri G. Antibacterial effect of two herbal extracts on the level of salivary Streptococcus mutans in children. J Evol Med Dent Sci 2021; 10:299-305.

    43. Chen X, Daliri EB, Kim N, Kim JR, Yoo D, Oh DH. Microbial etiology and prevention of dental caries :exploiting natural products to inhibit cariogenic biofilms. Pathogens 2020; 9:569.

  • 加载中
  • 10.1016j.virs.2024.10.001-ESM8.jpg
    10.1016j.virs.2024.10.001-ESM12.jpg
    10.1016j.virs.2024.10.001-ESM13.jpg
    10.1016j.virs.2024.10.001-ESM1.jpg
    10.1016j.virs.2024.10.001-ESM5.jpg
    10.1016j.virs.2024.10.001-ESM14.jpg
    10.1016j.virs.2024.10.001-ESM10.jpg
    10.1016j.virs.2024.10.001-ESM15.docx
    10.1016j.virs.2024.10.001-ESM6.jpg
    10.1016j.virs.2024.10.001-ESM2.jpg
    10.1016j.virs.2024.10.001-ESM7.jpg
    10.1016j.virs.2024.10.001-ESM11.jpg
    10.1016j.virs.2024.10.001-ESM9.jpg
    10.1016j.virs.2024.10.001-ESM4.jpg
    10.1016j.virs.2024.10.001-ESM3.jpg

Figures(1)

Article Metrics

Article views(491) PDF downloads(25) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Viral load dynamics in asymptomatic and symptomatic patients during Omicron BA.2 outbreak in Shanghai, China, 2022: A longitudinal cohort study

      Corresponding author: Hongjie Yu, yhj@fudan.edu.cn
      Corresponding author: Wenhong Zhang, zhangwenhong@fudan.edu.cn
    • a. Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China;
    • b. School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200433, China;
    • c. Shanghai Huashen Institute of Microbes and Infections, Shanghai 200050, China

    Abstract: The SARS-CoV-2 virus, particularly the Omicron BA.2 variant, led to a significant surge in Shanghai, 2022. However, the viral load dynamic in Omicron infections with varying clinical severities remain unclear. This prospective cohort included 48,830 hospitalized coronavirus disease 2019 (COVID-19) patients across three hospitals in Shanghai, China, between 23 March and 15 May, 2022. Systematic nucleic acid testing was performed using RT-PCR Cycle threshold (Ct) value as a proxy of viral load. We analyzed the kinetic characteristics of viral shedding by clinical severity and identified associated risk factors. The study comprised 31.06% asymptomatic cases, 67.66% mild-moderate cases, 1.00% severe cases, 0.29% critical and fatal cases. Upon admission, 57% of patients tested positive, with peak viral load observed at 4 days (median Ct value 27.5), followed by a decrease and an average viral shedding time (VST) of 6.1 days (Interquartile range, 4.0–8.8 days). Although viral load exhibited variation by age and clinical severity, peak Ct values occurred at similar times. Unvaccinated status, age exceeding 60, and comorbidities including hypertension, renal issues kidney dialysis and kidney transplantation, neurological disorders, rheumatism, and psychotic conditions were found to correlate with elevated peak viral load and extended VST. Asymptomatic cases demonstrated a 40% likelihood of contagiousness within 6 days of detection, while mild-moderate and severe cases exhibited post-symptom resolution infectious probabilities of 27% and over 50%, respectively. These findings revealed that the initial Ct values serve as a predictive indicator of severe outcomes. Unvaccinated elderly individuals with particular comorbidities are at high-risk for elevated viral load and prolonged VST.

    Figure (1)  Reference (43) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return