. doi: 10.1016/j.virs.2024.10.002
Citation: Yan Tong, Wenyi Jin, Xuan Li, Lin Guo, Gang Luo, Qian Meng, Jihong Zhang, Qilian Qin, Huan Zhang. Generation and characterization of a novel ovariole cell line derived from Spodoptera frugiperda in China with sensitivity to both SfMNPV and AcMNPV .VIROLOGICA SINICA, 2024, 39(6) : 929-937.  http://dx.doi.org/10.1016/j.virs.2024.10.002

对SfMNPV和AcMNPV均敏感的中国草地贪夜蛾卵巢管细胞系的建立和特征

cstr: 32224.14.j.virs.2024.10.002
  • 通讯作者: 张寰, zhanghuan@ioz.ac.cn
  • 收稿日期: 2024-01-27
    录用日期: 2024-10-09
  • 草地贪夜蛾核多角体病毒( SfMNPV )属于α-杆状病毒属,近期被我国登记为新型病毒生物杀虫剂。该病毒对2019年以来在中国云南省发现的全球性重大农业害虫草地贪夜蛾具有专化作用。为了深入了解病毒感染、复制过程和病毒颗粒的复杂形成机制,细胞系是体外研究必不可少的工具。草地贪夜蛾IPLB - Sf9和IPLB - Sf21细胞系常用于研究苜蓿银纹夜蛾核型多角体病毒( AcMNPV )的感染和复制机制,但其在SfMNPV感染后产生病毒多角体的能力并不理想。本研究从中国云南草地贪夜蛾种群中建立了一个新的细胞系IOZCAS-Sf-1。线粒体COX1基因分析验证了IOZCAS-Sf-1细胞系的种属来源。进一步对IOZCAS-Sf-1与IPLB-Sf9细胞系的COX1基因序列进行比较分析,证实了两者之间的差异。此外 ,IOZCAS-Sf-1细胞的另一个特性是在感染AcMNPV和SfMNPV后均具有产生多角体的显著能力。这株细胞系不仅能用于研究病毒复制的分子机制及其对宿主细胞的影响,也可以用于探究SfMNPV DNA的转染效率,是极具价值的生物资源。本研究为推进更有效的生物农药和可持续农业实践奠定了理论基础。

Generation and characterization of a novel ovariole cell line derived from Spodoptera frugiperda in China with sensitivity to both SfMNPV and AcMNPV

  • Corresponding author: Huan Zhang, zhanghuan@ioz.ac.cn
  • Received Date: 27 January 2024
    Accepted Date: 09 October 2024
  • Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), belonging to the species Alphabaculovirus spofrugiperdae, has been recently registered as an insecticide in China. This virus has a specific effect on the global major agricultural pest Spodoptera frugiperda. To gain insights into viral infection, replication processes, and the complex formation of viral particles, in vitro studies using cell lines are essential tools. Although the IPLB-Sf9 and IPLB-Sf21 cell lines derived from S. frugiperda are widely used for studies on the infection and replication mechanisms of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), their capacity to produce viral polyhedra after SfMNPV infection is not optimal. To address this limitation, a novel cell line named IOZCAS-Sf-1 was developed from a S. frugiperda population in Yunnan, China. The mitochondrial COX1 gene analysis confirmed the species origin of the IOZCAS-Sf-1 cell line. Furthermore, a comparative study was carried out to contrast the COX1 gene sequence of this novel cell line with that of IPLB-Sf9, highlighting the distinctions between the two. Importantly, the IOZCAS-Sf-1 cells exhibited a remarkable ability to generate polyhedra when infected with AcMNPV and SfMNPV, respectively. Consequently, this cellular lineage is considered a promising and valuable resource. It serves not only to investigate the molecular mechanisms of viral replication and its impact on host cells, but also to explore the transfection efficiency of SfMNPV DNA. This exploration further expands into its potential application in recombinant DNA experiments, laying a theoretical groundwork for the advancement of more effective biopesticides and sustainable agricultural practices.

  • 加载中
    1. Adams, J.R., McClintock J.T., 1991. Baculoviridae . Nuclear polyhedrosis viruses. Part 1. Nuclear polyhedrosis viruses of insects. In AJ R. & BJ R. (Eds.), Atlas of Invertebrate Viruses. Boca Raton, FL: CRC Press.

    2. Arive, I.B., 2014. Regulation of Multiple Infection in Alphabaculoviruses: Critical Factors that Determine Success. Pamplona: para optar al de Doctora por la Universidad Publica de Navarra.

    3. Barrera, G., Simon O., Villamizar L., Williams T., Caballero P., 2011. Spodoptera frugiperda multiple nucleopolyhedrovirus as a potential biological insecticide: Genetic and phenotypic comparison of field isolates from Colombia. Biol. Control. 58, 113-120.

    4. Barrera, G.P., Belaich M.N., Patarroyo M.A., Villamizar L.F., Ghiringhelli P.D., 2015. Evidence of recent interspecies horizontal gene transfer regarding nucleopolyhedrovirus infection of Spodoptera frugiperda. BMC Genomics. 16, 1008.

    5. Bateman, M.L., Day R.K., Rwomushana I., Subramanian S., Wilson K., Babendreier D., 2021. Updated assessment of potential biopesticide options for managing fall armyworm (Spodoptera frugiperda) in Africa. J. Appl. Entomol. 145, 384-393.

    6. Berretta, M.F., Rios M.L., De Cap A.S., 1998. Characterization of a nuclear polyhedrosis virus of Spodoptera frugiperda from Argentina. J. Invertebr. Pathol. 71, 280-282.

    7. Blanco, C.A., Portilla M., Jurat-Fuentes J.L., Sanchez J.F., Viteri D., VegaAquino P., Teran-Vargas A.P., Azuara-Dominguez A., Lopez J.D.J., Arias R., Zhu Y.C., Lugo-Barrera D., Jackson R., 2010. Susceptibility of Isofamilies of Spodoptera frugiperda (Lepidoptera: octuidae) to Cry1Ac and Cry1Fa Proteins of Bacillus thuringiensis. Southwest Entomol. 35, 409-415.

    8. Casmuz, A., Juarez M.L., Socias M.G., Murua M.G., Prieto S., Medina S., Willink E., Gastaminza G., 2010. Review of the host plants of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Rev. Soc. Entomol. Arge. 69, 209-231.

    9. Chalmers, J.J., 1996. Shear sensitivity of insect cells. Cytotechnology. 20, 163-171.

    10. Cheng, L.Q., Jin W.Y., Guo L., Fang F.F., Chen X.Z., Qin Q.L., Xu J.X., Zhang H., 2022. Comparative analysis of virulence of Spodoptera frugiperda multiple nucleopolyhedrovirus to different geographical populations of Spodoptera frugiperda in China. J. Enviro. Entomol. 44, 538-547.

    11. Clavijo, G., Williams T., Munoz D., Caballero P., Lopez-Ferber M., 2010. Mixed genotype transmission bodies and virions contribute to the maintenance of diversity in an insect virus. Proc. Biol. Sci. 277, 943-951.

    12. Crawford, A.M., Sheehan C., 1983. Persistent baculovirus infections: Spodoptera frugiperda NPV and Autographa californica NPV in Spodoptera frugiperda cells. Arch. Virol. 78, 65-79.

    13. Danyluk, G.M., Maruniak J.E., 1987. In vivo and in vitro host range of Autographa californica nuclear polyhedrosis virus and Spodoptera frugiperda nuclear polyhedrosis virus. J. Invertebr. Pathol. 50, 207-212.

    14. Doverskog, M., Bertram E., Ljunggren J., Ohman L., Sennerstam R., Haggstrom L., 2000. Cell cycle progression in serum-free cultures of Sf9 insect cells: modulation by conditioned medium factors and implications for proliferation and productivity. Biotechnol. Prog. 16, 837-846.

    15. Escribano, A., Williams T., Goulson D., Cave R.D., Chapman J.W., Caballero P., 1999. Selection of a nucleopolyhedrovirus for control of Spodoptera frugiperda (Lepidoptera: Noctuidae): Structural, genetic, and biological comparison of four isolates from the Americas. J. Econ. Entomol. 92, 1079-1085.

    16. Gimenez, S., Abdelgaffar, H., Goff, G.L., Hilliou, F., Blanco, C.A., Hänniger, S., Bretaudeau, A., Legeai, F., Nègre, N., Jurat-Fuentes, J.L., d’Alençon, E., Nam, K., 2020. Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Commun. Biol. 3 (1), 664.

    17. Goodwin, R.H., Vaughn J.L., Adams J.R., Louloudes S.J., 1970. Replication of a nuclear polyhedrosis virus in an established insect cell line. J. Invertebr. Pathol. 16, 284-288.

    18. Goodwin, R.H., Vaughn J.L., Adams J.R., Louloudes S.J., 1973. The influence of insect cell lines and tissue culture media on Baculovirus polyhedra production. Misc. Publ. Entomol. Soc. Am. 9, 66-72.

    19. Granados, R.R., Williams K.A., 1986. In vivo infection and replication of baculoviruses (Vol. 464). Boca Raton, FL: CRC Press.

    20. Haas-Stapleton, E.J., Washburn J.O., Volkman L.E., 2003. Pathogenesis of Autographa californica M nucleopolyhedrovirus in fifth instar Spodoptera frugiperda. J. Gen. Virol. 84, 2033-2040.

    21. Hamm, J.J., Styer E.L., 1985. Comparative pathology of isolates of spodoptera-frugiperda nuclear polyhedrosis-virus in Spodoptera-frugiperda and Spodoptera-exigua. J. Gen. Virol. 66, 1249-1261.

    22. Hussain, A.G., Wennmann J.T., Goergen G., Bryon A., Ros V.I.D., 2021. Viruses of the Fall Armyworm Spodoptera frugiperda: A Review with Prospects for Biological Control. Viruses. 13, 2220.

    23. Jarman-Smith, R.F., Armstrong S.J., Mannix C.J., Al-Rubeai M., 2002. Chromosome instability in Spodoptera frugiperda Sf-9 cell line. Biotechnol. Prog. 18, 623-628.

    24. Jarman-Smith, R.F., Mannix C., Al-Rubeai M., 2004. Characterisation of Tetraploid and Diploid Clones of Spodoptera frugiperda Cell Line. Cytotechnology. 44, 15-25.

    25. Jeger, M., Bragard C., Caffier D., Candresse T., Chatzivassiliou E., Dehnen-Schmutz K., Gilioli G., Gregoire J.C., Jaques Miret J.A., Navarro M.N., Niere B., Parnell S., Potting R., Rafoss T., Rossi V., Urek G., Van Bruggen A., Van der Werf W., West J., Winter S., Gardi C., Aukhojee M., MacLeod A., 2017. Pest categorisation of Spodoptera frugiperda. EFSA. J. 15, e04927.

    26. Jin, W.Y., Tong, Y., Meng, Q., Chen, X.Z., Fang, F.F., Qin, Q.L., Zhang, J.H., Shu, R.H., Zhang, H., 2021. Virulence and genetic variation of Autographa californica nucleopolyhedrovirus under selection pressure of Spodoptera frugiperda. J. Environ. Entomol. 43, 1129-1135.

    27. Kakumani, P.K, Malhotra P, Mukherjee S.K., Bhatnagar R.K., 2014. A draft genome assembly of the army worm, Spodoptera frugiperda. Genomics. 104, 134-143.

    28. Knudson, D.L., Tinsley T.W., 1974. Replication of a nuclear polyhedrosis Virus in a continuous cell culture of Spodoptera frugiperda: purification, assay of infectivity, and growth-characteristics of Virus. J. Virol. 14, 934-944.

    29. Kuchler R. J., 1977. Development of animal cell populations in vitro. In: Kuchler R.J. (ed) Biochemical ethods in cell culture and virology Inc. Stroudsburg. pp. 90-113.

    30. Lei, C., Yang J., Wang J., Hu J., Sun X., 2020. Molecular and Biological Characterization of Spodoptera frugiperda Multiple Nucleopolyhedrovirus Field Isolate and Genotypes from China. Insects. 11(11).

    31. Leon-Garcia, I., Rodriguez-Leyva E., Ortega-Arenas L.D., Solis-Aguilar J.F., 2012. Susceptibilidad de Spodoptera frugiperda (JESmith)(Lepidoptera: Noctuidae) a insecticidas asociada a cesped en Quintana Roo. Mexico Agrociencia. 46, 279-287.

    32. Lery, X., Charpentier G., Belloncik S., 1999. DNA content analysis of insect cell lines by flow cytometry. Cytotechnology. 29, 103-113.

    33. Liu, H., Lan T., Fang D., Gui F., Liu X., 2019. Chromosome level draft genomes of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), an alien invasive pest in China. Cold Spring Harbor Laboratory.

    34. Lynn, D.E., Oberlander H., 1983. The establishment of cell lines from imaginal wing discs of Spodoptera frugiperda and Plodia interpunctella - ScienceDirect J. Insect. Physiol. 29, 591-593, 595-596.

    35. Ma, H., Galvin T.A., Glasner D.R., Shaheduzzaman S., Khan A.S., Beemon K.L., 2014. Identification of a Novel Rhabdovirus in Spodoptera frugiperda Cell Lines. Journal of Virology. 88, 6576-6585.

    36. Maghodia, A.B., Geisler, C., Jarvis, D.L., 2016. Characterization of an Sf-rhabdovirus-negative Spodoptera frugiperda cell line as an alternative host for recombinant protein production in the baculovirus-insect cell system. Protein Expr Purif. 122, 45-55.

    37. Masson, T., Fabre M.L., Pidre M.L., Niz J.M., Berretta M.F., Romanowski V., Ferrelli M.L., 2021. Genomic diversity in a population of Spodoptera frugiperda nucleopolyhedrovirus. Infect Genet. Evol. 90, 104749.

    38. McIntosh, A.H., Ignoffo C.M., Andrews P.L., 1985. In vitro host range of five baculoviruses in lepidopteran cell lines. Intervirology. 23, 150-156.

    39. Mei, L., Chen M., Shang Y., Tang G., Tao Y., Zeng L., Huang B., Li Z., Zhan S., Wang C., 2020. Population genomics and evolution of a fungal pathogen after releasing exotic strains to control insect pests for 20 years. Isme. J. 14, 1422-1434.

    40. Nandakumar, S., Ma H., Khan A.S., 2017. Whole-Genome Sequence of the Spodoptera frugiperda Sf9 Insect Cell Line. Genome Announc. 5, e00829.-17.

    41. Popham, H.J.R., Rowley D.L., Harrison R.L., 2021. Differential insecticidal properties of Spodoptera frugiperda multiple nucleopolyhedrovirus isolates against corn-strain and rice-strain fall armyworm, and genomic analysis of three isolates. J. Invertebr. Pathol. 183, 107561.

    42. Reall, T., Kraus S., Goodman C.L., Ringbauer J., Jr., Geibel S., Stanley D., 2019. Next-generation cell lines established from the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro Cell Dev. Biol. Anim. 55, 686-693.

    43. Simon, O., Palma L., Beperet I., Munoz D., Lopez-Ferber M., Caballero P., Williams T., 2011. Sequence comparison between three geographically distinct Spodoptera frugiperda multiple nucleopolyhedrovirus isolates: Detecting positively selected genes. J. Invertebr. Pathol. 107, 33-42.

    44. Simon, O., Williams T., Lopez-Ferber M., Caballero P., 2012. Deletion of egt is responsible for the fast-killing phenotype of natural deletion genotypes in a Spodoptera frugiperda multiple nucleopolyhedrovirus population. J. Invertebr. Pathol. 111, 260-263.

    45. Tong, Y., Cheng L.Q., Li X., Yu X.P., Shu R.H., Zhang J.H., Meng Q., Qin Q.L., Tang K., Xu J.X., Zhang H., 2021. Establishment of an immortalized cell line derived from the pupal ovary of Mythimna separata (Lepidoptera: Noctuidae) and identification of the cell source. Cell Tissue Res. 386, 661-677.

    46. Vaughn, J.L., Goodwin R.H., Tompkins G.J., McCawley P., 1977. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro. 13, 213-217.

    47. Vieira, C.M., Tuelher E.S., Valicente F.H., Caldas Wolff J.L., 2012. Characterization of a Spodoptera frugiperda multiple nucleopolyhedrovirus isolate that does not liquefy the integument of infected larvae. J. Invertebr. Pathol. 111, 189-192.

    48. Wang, Y., Goodman C.L., Ringbauer J., Jr., Li Y., Stanley D., 2021. Prostaglandin A(2) induces apoptosis in three cell lines derived from the fall armyworm, Spodoptera frugiperda. Arch. Insect Biochem. Physiol. 108, e21844.

    49. Weidner, T., Druzinec D., Muhlmann M., Buchholz R., Czermak P., 2017. The components of shear stress affecting insect cells used with the baculovirus expression vector system. Z. Naturforsch. C. J. Biosci. 26; 72, 429-439.

    50. Wolff, J.L.C., Valicente F.H., Martins R., Oliveira J.V.C., Zanotto P.M.A., 2008. Analysis of the genome of Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV-19) and of the high genomic heterogeneity in group II nucleopolyhedroviruses. J. Gen. Virol. 89, 1202-1211.

    51. Xiao, H., Ye X., Xu H., Mei Y., Yang Y., Chen X., Yang Y., Liu T., Yu Y., Yang W., Lu Z., Li F., 2020. The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion. Mol. Ecol. Resour. 20, 1050-1068.

    52. Zhang, L., Liu B., Zheng W., Liu C., Xiao Y., 2019. High-depth resequencing reveals hybrid population and insecticide resistance characteristics of fall armyworm (Spodoptera frugiperda) invading China. Cold Spring Harbor Laboratory.

    53. Zhou, K., Goodman C.L., Ringbauer J., Jr., Song Q., Beerntsen B., Stanley D., 2020. Establishment of two midgut cell lines from the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro Cell Dev. Biol. Anim. 56, 10-14.

  • 加载中
  • 10.1016j.virs.2024.10.002-ESM.docx

Figures(1)

Article Metrics

Article views(390) PDF downloads(4) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Generation and characterization of a novel ovariole cell line derived from Spodoptera frugiperda in China with sensitivity to both SfMNPV and AcMNPV

      Corresponding author: Huan Zhang, zhanghuan@ioz.ac.cn
    • a. State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China;
    • b. Yunnan Ning'er Hani and Yi Autonomous County Plant Protection Plant Inspection Station, Ning'er, 665199, China;
    • c. University of Chinese Academy of Sciences, Beijing, 101408, China

    Abstract: Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), belonging to the species Alphabaculovirus spofrugiperdae, has been recently registered as an insecticide in China. This virus has a specific effect on the global major agricultural pest Spodoptera frugiperda. To gain insights into viral infection, replication processes, and the complex formation of viral particles, in vitro studies using cell lines are essential tools. Although the IPLB-Sf9 and IPLB-Sf21 cell lines derived from S. frugiperda are widely used for studies on the infection and replication mechanisms of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), their capacity to produce viral polyhedra after SfMNPV infection is not optimal. To address this limitation, a novel cell line named IOZCAS-Sf-1 was developed from a S. frugiperda population in Yunnan, China. The mitochondrial COX1 gene analysis confirmed the species origin of the IOZCAS-Sf-1 cell line. Furthermore, a comparative study was carried out to contrast the COX1 gene sequence of this novel cell line with that of IPLB-Sf9, highlighting the distinctions between the two. Importantly, the IOZCAS-Sf-1 cells exhibited a remarkable ability to generate polyhedra when infected with AcMNPV and SfMNPV, respectively. Consequently, this cellular lineage is considered a promising and valuable resource. It serves not only to investigate the molecular mechanisms of viral replication and its impact on host cells, but also to explore the transfection efficiency of SfMNPV DNA. This exploration further expands into its potential application in recombinant DNA experiments, laying a theoretical groundwork for the advancement of more effective biopesticides and sustainable agricultural practices.

    Figure (1)  Reference (53) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return