. doi: 10.1016/j.virs.2024.11.005
Citation: Feixia Gao, Qi Wang, Chenchen Qiu, Jian Luo, Xiuling Li. Pandemic preparedness of effective vaccines for the outbreak of newly H5N1 highly pathogenic avian influenza virus .VIROLOGICA SINICA, 2024, 39(6) : 981-985.  http://dx.doi.org/10.1016/j.virs.2024.11.005

应对新发H5N1高致病性禽流感病毒的大流行疫苗准备

cstr: 32224.14.j.virs.2024.11.005
  • 高致病性禽流感病毒H5N1给全球公共卫生构成严重威胁。自1997年全球首例人感染H5N1病毒以来,该病毒在全球蔓延,并演变发展为不同分支(Fig. 1A)。截止至2024年11月18日,高致病性禽流感病毒H5N1已造成全球925例人感染病例,其中464例死亡病例,病死率超过50%。
    2020年以来,2.3.4.4b分支H5N1病毒在全球野生鸟类中广泛传播,导致家禽和其他动物疫情暴发。2024年3月下旬,美国报告了因接触受感染的奶牛而感染了2.3.4.4b分支H5N1病毒的人感染病例,与以往感染病例不同,该案例是全球报告的首例H5N1病毒在人与另一种哺乳动物之间传播。研究发现,该病毒HA,PB2,M1和NS1等基因均发生了与哺乳动物宿主适应性相关突变(Fig. 1B, C)。鉴于H5N1高致病性禽流感病毒进化和变异的不确定性,做好新发H5N1高致病性禽流感病毒的防控准备至关重要。
    疫苗接种是防控H5N1病毒潜在大流行最有效措施。近年来,为做好H5N1流感大流行准备,先后有14种人用H5N1疫苗在不同的国家和地区批准使用或用于储备计划(Table. 1),涵盖全病毒灭活疫苗、裂解疫苗、亚单位疫苗和减毒活疫苗等类型,氢氧化铝、MF59和AS03等佐剂被广泛应用于增强疫苗免疫原性。然而现有获批的疫苗均针对早期出现的H5N1病毒开发,针对以往H5N1病毒株的疫苗对现阶段流行的2.3.4.4b分支病毒交叉应答较弱,迫切需要研发针对新发H5N1病毒的特异性疫苗。
    针对新发H5N1病毒的疫苗开发目前主要集中于含佐剂的灭活疫苗。WHO最新公布的H5流感候选疫苗株中,有3种候选疫苗株与新发2.3.4.4b分支H5N1毒株有高度同源性(Fig. 1D),针对这3种候选疫苗株的开发可能可提供针对新发H5N1病毒的交叉保护作用。基于以往H5N1疫苗快速开发经验,已有2款基于这些候选疫苗株的佐剂疫苗于2023年10月在欧洲和澳大利亚获批准使用,另有3种佐剂疫苗正处于临床试验阶段。除了传统疫苗开发平台,mRNA疫苗平台具备快速响应、生产迅速和诱导全面免疫反应的优势,适合快速应对高致病性禽流感病毒的流行。目前已分别有1种mRNA疫苗和1种自复制mRNA疫苗正处于临床试验阶段。考虑到不同国家和地区病毒流行趋势不同,针对不同分支H5病毒的多价疫苗开发也非常有必要。基于我国甲型H7N9流感病毒的防控经验,推进家禽疫苗接种也是防控禽流感的关键举措。
    因此,面对高致病性禽流感病毒的广泛分布和持续进化引起的未知风险,各国和组织应加强合作,制定多种防控策略,尤其是有效疫苗的研发,以应对潜在的H5N1病毒大流行。

Pandemic preparedness of effective vaccines for the outbreak of newly H5N1 highly pathogenic avian influenza virus

  • Highlights
    1. Analyzed the outbreak situation and viral characteristics of the newly H5N1 highly pathogenic avian influenza (HPAI) virus.
    2. The current approval and research and development of the H5N1 HPAI vaccines were summarized.
    3. Proposed vaccine development approaches against newly H5N1 virus, e.g. adjuvanted vaccine, mRNA vaccine, multivalent vaccine.
    4. Discussed other prevention and control strategies, e.g. poultry vaccination, global surveillance and comprehensive testing.

  • 加载中
    1. Alasiri, A., Soltane, R., Hegazy, A., Khalil, A.M., Mahmoud, S.H., Khalil, A.A., Martinez-Sobrido, L., Mostafa, A., 2023. Vaccination and antiviral treatment against avian influenza H5Nx viruses: a harbinger of virus control or evolution. Vaccines 11, 1628.

    2. Cargnin Faccin, F., Perez, D.R., 2024. Pandemic preparedness through vaccine development for avian influenza viruses. Hum. Vaccines Immunother. 20, 2347019.

    3. Fan, S., Deng, G., Song, J., Tian, G., Suo, Y., Jiang, Y., Guan, Y., Bu, Z., Kawaoka, Y., Chen, H., 2009. Two amino acid residues in the 253 matrix protein m1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology, 384, 28-32.

    4. Furey, C., Scher, G., Ye, N., Kercher, L., Debeauchamp, J., Crumpton, J.C., Jeevan, T., Patton, C., Franks, J., Rubrum, A., Alameh, M., Fan, S.H.Y., Phan, A.T., Hunter, C.A., Webby, R.J., Weissman, D., Hensley, S.E., 2024. Development of a nucleoside-modified mRNA vaccine against clade 2.3.4.4b H5 highly pathogenic avian influenza virus. Nat. Commun., 15, 4350.

    5. Gao, F., Liu, X., Dang, Y., Duan, P., Xu, W., Zhang, X., Wang, S., Luo, J., Li, X., 2022. Addavax-adjuvanted H5N8 inactivated vaccine induces robust humoral immune response against different clades of H5 viruses. Vaccines, 10, 1683.

    6. Jiao, P., Tian, G., Li, Y., Deng, G., Jiang, Y., Liu, C., Liu, W., Bu, Z., Kawaoka, Y., Chen, H., 2008. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J. Virol., 82, 1146-1154.

    7. Kayali, G., Kandeil, A., El-Shesheny, R., Kayed, A.S., Maatouq, A.M., Cai, Z., Mckenzie, P.P., Webby, R. J., El Refaey, S., Kandeel, A., Ali, M.A., 2016. Avian influenza a(H5N1) virus in Egypt. Emerg. Infect. Dis., 22, 379-388.

    8. Khurana, S., King, L.R., Manischewitz, J., Posadas, O., Mishra, A.K., Liu, D., Beigel, J.H., Rappuoli, R., Tsang, J.S., Golding, H., 2024. Licensed H5N1 vaccines generate cross-neutralizing antibodies against highly pathogenic H5N1 clade 2.3.4.4b influenza virus. Nat. Med., 30, 2771-2776.

    9. Sakai-Tagawa, Y., Horimoto, T., Skehel, J. J., Shinya, K., Yamada, S., Nidom, C. A., Gamblin, S. J., Hay, A., Russell, R. J., Kawaoka, Y., Lin, Y., Ito, M., Stevens, D. J., Suzuki, T., Kiso, M., Murata, T., Suzuki, Y., Kiso, M., Haire, L. F., Le, M. Q., Muramoto, Y., Usui, T., Sawada, T., 2006. Haemagglutinin mutations responsible for the binding of H5N1 influenza a viruses to human-type receptors. Nature, 7117, 378-382.

    10. Shi, J., Zeng, X., Cui, P., Yan, C., Chen, H., 2023. Alarming situation of emerging H5 and H7 avian influenza and effective control strategies. Emerg. Microb. Infect., 12, 2155072.

    11. Siegers, J.Y., Xie, R., Byrne, A.M.P., Edwards, K.M., Hu, S., Yann, S., Sin, S., Tok, S., Chea, K., Horm, S., Rith, C., Keo, S., Pum, L., Duong, V., Auerswald, H., Phou, Y., Kol, S., Spiegel, A., Harvey, R., Tum, S., Sorn, S., Seng, B., Sengdoeurn, Y., Darapheak, C., Savuth, C., Hak, M., Ieng, V., Patel, S., Di, H., Davis, C.T., Finlay, A., Sar, B., Thielen, P., Claes, F.F., Lewis, N.S., Sovann, L., Dhanasekaran, V., Karlsson, E.A., 2024. Emergence of a novel reassortant clade 2.3.2.1c avian influenza a/H5N1 virus associated with human cases in Cambodia. medRxiv, 2024.11.04.24313747.

    12. Uyeki, T.M., Milton, S., Abdul Hamid, C., Reinoso Webb, C., Presley, S.M., Shetty, V., Rollo, S.N., Martinez, D.L., Rai, S., Gonzales, E.R., Kniss, K.L., Jang, Y., Frederick, J.C., De La Cruz, J.A., Liddell, J., Di, H., Kirby, M.K., Barnes, J.R., Davis, C.T., 2024. Highly pathogenic avian influenza a(H5N1) virus infection in a dairy farm worker. N. Engl. J. Med., 21, 2028-2029.

    13. Zeng, X., He, X., Meng, F., Qi, M., Wang, Y., Bao, H., Liu, Y., Deng, G., Shi, J., Li, Y., Tian, G., Chen, H., 2022. Protective efficacy of an H5/H7 trivalent inactivated vaccine (H5-Re13, H5-Re14, and H7-Re4 strains) in chickens, ducks, and geese against newly detected H5N1, H5N6, H5N8, and H7N9 viruses. J. Integr. Agric., 21, 2086-2094.

    14. Zhang, Y., Cui, P., Shi, J., Zeng, X., Jiang, Y., Chen, Y., Zhang, J., Wang, C., Wang, Y., Tian, G., Chen, H., Kong, H., Deng, G., 2024. A broad-spectrum vaccine candidate against H5 viruses bearing different sub-clade 2.3.4.4 HA genes. Npj Vacc., 1, 152.

    15. Zhu, W., Li, X., Dong, J., Bo, H., Liu, J., Yang, J., Zhang, Y., Wei, H., Huang, W., Zhao, X., Chen, T., Yang, J., Li, Z., Zeng, X., Li, C., Tang, J., Xin, L., Gao, R., Liu, L., Tan, M., Shu, Y., Yang, L., Wang, D., 2022. Epidemiologic, clinical, and genetic characteristics of human infections with influenza A(H5N6) viruses, China. Emerg. Infect. Dis. 7, 1332-1344.

  • 加载中

Figures(1)

Article Metrics

Article views(481) PDF downloads(9) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Pandemic preparedness of effective vaccines for the outbreak of newly H5N1 highly pathogenic avian influenza virus

      Corresponding author: Jian Luo, rojjer2009@hotmail.com
      Corresponding author: Xiuling Li, 18910222351@163.com
    • a. Shanghai Institute of Biological Products, 200052, Shanghai, China;
    • b. State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, Beijing, China

    Abstract: Highlights
    1. Analyzed the outbreak situation and viral characteristics of the newly H5N1 highly pathogenic avian influenza (HPAI) virus.
    2. The current approval and research and development of the H5N1 HPAI vaccines were summarized.
    3. Proposed vaccine development approaches against newly H5N1 virus, e.g. adjuvanted vaccine, mRNA vaccine, multivalent vaccine.
    4. Discussed other prevention and control strategies, e.g. poultry vaccination, global surveillance and comprehensive testing.

    Figure (1)  Reference (15) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return