• Bartenschlager R, Schaller H. Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome[J]. EMBO J, 1992, 11(9): 3413-3420.

  • Beck J, Nassal M. Sequence-and structure-specific determinants in the interaction between thε RNA encapsidation signal and reverse transcriptase of avian hepatitis B viruses[J]. J Virol, 1997, 71(7): 4971-4980.

  • Beck J, Nassal M. Formation of a functional hepatitis B virus replication initiation complex involves a major structural alteration in thε RNA template[J]. Mol Cell Biol, 1998, 18(11): 6265-6272. doi: 10.1128/MCB.18.11.6265

  • Beck J, Nassal M. Efficient Hsp90-independent in vitro activation by Hsc70 and Hsp40 of duck Hepatitis B virus reverse transcriptase, an assumed Hsp90 client protein[J]. J Biol Chem, 2003, 278(38): 36128-36138. doi: 10.1074/jbc.M301069200

  • Beck J, Nassal M. Hepatitis B virus replication[J]. World J Gastroenterol, 2007, 13(1): 48-64. doi: 10.3748/wjg.v13.i1.48

  • Beck J, Vogel M, Nassal M. dNTP versus NTP discrimination by phenylalanine 451 in duck hepatitis B virus P protein indicates a common structure of the dNTP-binding pocket with other reverse transcriptases[J]. Nucl Acids Res, 2002, 30(7): 1679-1687. doi: 10.1093/nar/30.7.1679

  • Chen Y, Marion P L. Amino acids essential for RNase H activity of hepadnaviruses are also required for efficient elongation of minus-strand viral DNA[J]. J Virol, 1996, 70(9): 6151-6156.

  • Chen Y, Robinson W S, Marion P L. Selected mutations of the duck hepatitis B virus P gene RNase H domain affect both RNA packaging and priming of minus-strand DNA synthesis[J]. J Virol, 1994, 68(8): 5232-5238.

  • Feng H, Hu K. Aptamers against viral hepatitis: from rational design to practical application[J]. Virol Sin, 2008, 23(5): 315-320. doi: 10.1007/s12250-008-2979-y

  • Gao W, Hu J. Formation of Hepatitis B Virus Covalently Closed Circular DNA: Removal of Genome-Linked Protein[J]. J Virol, 2007, 81(12): 6164-6174. doi: 10.1128/JVI.02721-06

  • Girard F C, Ottink O M, Ampt K A.. Thermodynamics and NMR studies on Duck, Heron and Human HBV encapsidation signals[J]. Nucl Acids Res, 2007, 35(8): 2800-2811. doi: 10.1093/nar/gkm131

  • Habig J W, Loeb D D. Sequence identity of the direct repeats, DR1 and DR2, contributes to the discrimination between primer translocation and in situ priming during replication of the duck hepatitis B virus[J]. J Mol Biol, 2006, 364(1): 32-43. doi: 10.1016/j.jmb.2006.08.095

  • Haines K M, Loeb D D. The sequence of thε RNA primer and the DNA template influence the initiation of plus-strand DNA synthesis in hepatitis B virus[J]. J Mol Biol, 2007, 370(3): 471-480. doi: 10.1016/j.jmb.2007.04.057

  • Hu J, Boyer M. Hepatitis B virus reverse trans-criptase and Dž RNA sequences required for specific interaction in vitro[J]. J Virol, 2006, 80(5): 2141-2150. doi: 10.1128/JVI.80.5.2141-2150.2006

  • Hu J, Flores D, Toft D. Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function[J]. J Virol, 2004, 78(23): 13122-13131. doi: 10.1128/JVI.78.23.13122-13131.2004

  • Hu J, Lin L. RNA-protein interactions in hepadnavirus reverse transcription[J]. Front Biosci, 2009, 14(): 1606-1618.

  • Hu J, Nguyen D. Therapy for chronic hepatitis B: the earlier, the better?[J]. Trends Microbiol, 2004, 12(10): 431-433. doi: 10.1016/j.tim.2004.08.007

  • Hu J, Seeger C. Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase[J]. Proc Natl Acad Sci USA, 1996, 93(3): 1060-1064. doi: 10.1073/pnas.93.3.1060

  • Hu J, Toft D, Anselmo D. In vitro reconstitution of functional Hepadnavirus reverse trans-criptase with cellular chaperone proteins[J]. J Virol, 2002, 76(1): 269-279. doi: 10.1128/JVI.76.1.269-279.2002

  • Hu J, Toft D, Seeger C. Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids[J]. EMBO J, 1997, 16(1): 59-68. doi: 10.1093/emboj/16.1.59

  • Hu K, Beck J, Nassal M. SELEX-derived aptamers of the duck hepatitis B virus RNA encapsidation signal distinguish critical and non-critical residues for productive initiation of rever transcription[J]. Nucl Acids Res, 2004, 32(14): 4377-4389. doi: 10.1093/nar/gkh772

  • Huang H, Chopra R, Verdine G L. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance[J]. Science, 1998, 282(5394): 1669-1675. doi: 10.1126/science.282.5394.1669

  • Joyce C M. Choosing the right sugar: how poly-merases select a nucleotide substrate[J]. Proc Natl Acad Sci USA, 1997, 94(5): 1619-1622. doi: 10.1073/pnas.94.5.1619

  • Kim H Y, Kim H Y, Jung J. Incorporation of deoxyribonucleotides and ribonucleotides by a dNTP-binding cleft mutated reverse transcriptase in hepatitis B virus core particles[J]. Virology, 2008, 370(1): 205-212. doi: 10.1016/j.virol.2007.08.018

  • Lanford R E, Notvall L, Lee H. Transcomplementation of nucleotide priming and reverse transcription between independently expressed TP and RT domains of the hepatitis B virus reverse transcriptase[J]. J Virol, 1997, 71(): 2996-3004.

  • Lin L, Hu J. Inhibition of hepadnavirus reverse transcriptase-epsilon RNA interaction by porphyrin compounds[J]. J Virol, 2008, 82(5): 2305-2312. doi: 10.1128/JVI.02147-07

  • Lin X, Ma Z M, Yao X. Substitution of proline 306 in the reverse transcriptase domain of hepatitis B virus regulates replication[J]. J Gen Virol, 2005, 86(1): 85-90. doi: 10.1099/vir.0.80581-0

  • Lin X, Yuan Z H, Wu L. A single amino acid in the reverse transcriptase domain of hepatitis B virus affects virus replication efficiency[J]. J Virol, 2001, 75(23): 11827-11833. doi: 10.1128/JVI.75.23.11827-11833.2001

  • Liu N, Ji L, Maguire M L. cis-Acting sequences that contribute to the synthesis of relaxed-circular DNA of human hepatitis B virus[J]. J Virol, 2004, 78(2): 642-649. doi: 10.1128/JVI.78.2.642-649.2004

  • Nassal M. Hepatitis B viruses: Reverse transcription a different way[J]. Virus Research, 2008, 134(1-2): 235-249. doi: 10.1016/j.virusres.2007.12.024

  • Nassal M, Rieger A. A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous firststrand DNA synthesis[J]. J Virol, 1996, 70(5): 2764-2773.

  • Nassal M, Schaller H. Hepatitis B virus replication[J]. Trends Microbiol, 1994, 1(6): 221-228.

  • Ono S K, Kato N, Shiratori Y. The polymerase L528M mutation cooperates with nucleotide binding-site mutations, increasing hepatitis B virus replication and drug resistance[J]. J Clin Invest, 2001, 107(4): 449-455. doi: 10.1172/JCI11100

  • Potenza N, Salvatore V, Raimondo D. Optimized expression from a synthetic gene of an untagged RNase H domain of human hepatitis B virus polymerase which is enzymatically active[J]. Protein Expr Purif, 2007, 55(1): 93-99. doi: 10.1016/j.pep.2007.04.005

  • Radziwill G, Tucker W, Schaller H. Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity[J]. J Virol, 1990, 64(2): 613-620.

  • Schaaf S G, Beck J, Nassal M. A small 2'-OH-and base-dependent recognition element downstream of the initiation site in thε RNA encapsidation signal is essential for hepatitis B virus replication initiation[J]. J Biol Chem, 1999, 274(53): 37787-37794. doi: 10.1074/jbc.274.53.37787

  • Seeger C, Mason W S. Hepatitis B virus biology[J]. Microbiol Mol Biol Rev, 2000, 64(1): 51-68. doi: 10.1128/MMBR.64.1.51-68.2000

  • Stahl M, Beck J, Nassal M. Chaperones Activate Hepadnavirus Reverse Transcriptase by Transiently Exposing a C-Proximal Region in the Terminal Protein Domain That Contributes to Dž RNA Binding[J]. J Virol, 2007, 81(24): 13354-13364. doi: 10.1128/JVI.01196-07

  • Stahl M, Retzlaff M, Nassal M. Chaperone activation of the hepadnaviral reverse transcriptase for templatε RNA binding is established by the Hsp70 and stimulated by the Hsp90 system[J]. Nucleic Acids Research, 2007, 35(18): 6124-6136. doi: 10.1093/nar/gkm628

  • Summers J, Mason W S. Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate[J]. Cell, 1982, 29(2): 403-415. doi: 10.1016/0092-8674(82)90157-X

  • Van Hemert F J, Zaaijer H L, Berkhout B. Mosaic amino acid conservation in 3D-structures of surface protein and polymerase of hepatitis B virus[J]. Virology, 2008, 370(2): 362-372. doi: 10.1016/j.virol.2007.08.036

  • Wang G H, Seeger C. The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis[J]. Cell, 1992, 71(4): 663-670. doi: 10.1016/0092-8674(92)90599-8

  • Wang G H, Seeger C. Novel mechanism for reverse transcription in hepatitis B viruses[J]. J Virol, 1993, 67(11): 6507-6512.

  • Wang X, Qian X, Guo H C. Heat shock protein 90-independent activation of truncated Hepadnavirus reverse transcriptase[J]. J Virol, 2003, 77(8): 4471-4480. doi: 10.1128/JVI.77.8.4471-4480.2003

  • Ying C, Li Y, Leung C H. Unique antiviral mechanism discovered in anti-hepatitis B virus research with a natural product analogue[J]. Proc Natl Acad Sci USA, 2007, 104(20): 8526-8531. doi: 10.1073/pnas.0609883104

  • Zoulim F, Seeger C. Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase[J]. J Virol, 1994, 68(1): 6-13.