• Amineva, S.P., Aminev, A.G., Palmenberg, A.C., Gern, J.E., 2004. Rhinovirus 3C protease precursors 3CD and 3CD' localize to the nuclei of infected cells. J. Gen. Virol. 85, 2969–2979.

  • Bhaumik, S.R., Smith, E., Shilatifard, A., 2007. Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008–1016.

  • Britton, L.M., Sova, P., Belisle, S., Liu, S., Chan, E.Y., Katze, M.G., Garcia, B.A., 2014. A proteomic glimpse into the initial global epigenetic changes during HIV infection. Proteomics 14, 2226–2230.

  • Clark, M.E., Hammerle, T., Wimmer, E., Dasgupta, A., 1991. Poliovirus proteinase 3C converts an active form of transcription factor IIIC to an inactive form: a mechanism for inhibition of host cell polymerase III transcription by poliovirus. EMBO J. 10, 2941–2947.

  • Clark, M.E., Lieberman, P.M., Berk, A.J., Dasgupta, A., 1993. Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Mol. Cell Biol. 13, 1232–1237.

  • Etchison, D., Milburn, S.C., Edery, I., Sonenberg, N., Hershey, J.W., 1982. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J. Biol. Chem. 257, 14806–14810.

  • Fonseca, G.J., Thillainadesan, G., Yousef, A.F., Ablack, J.N., Mossman, K.L., Torchia, J., Mymryk, J.S., 2012. Adenovirus evasion of interferon-mediated innate immunity by direct antagonism of a cellular histone posttranslational modification. Cell Host Microbe 11, 597–606.

  • Genin, P., Lin, R., Hiscott, J., Civas, A., 2012. Recruitment of histone deacetylase 3 to the interferon-A gene promoters attenuates interferon expression. PLoS One 7, e38336.

  • Guo, Q., Sidoli, S., Garcia, B.A., Zhao, X., 2018. Assessment of quantification precision of histone post-translational modifications by using an ion trap and down to 50 000 cells as starting material. J. Proteome Res. 17, 234–242. Jan 5.

  • Han, X., Li, X., Yue, S.C., Anandaiah, A., Hashem, F., Reinach, P.S., Koziel, H., Tachado, S.D., 2012. Epigenetic regulation of tumor necrosis factor alpha (TNFalpha) release in human macrophages by HIV-1 single-stranded RNA (ssRNA) is dependent on TLR8 signaling. J. Biol. Chem. 287, 13778–13786.

  • Horwitz, G.A., Zhang, K., McBrian, M.A., Grunstein, M., Kurdistani, S.K., Berk, A.J., 2008. Adenovirus small e1a alters global patterns of histone modification. Science 321, 1084–1085.

  • Huang, H., Sabari, B.R., Garcia, B.A., Allis, C.D., Zhao, Y., 2014. SnapShot: histone modifications. Cell 159, 458–458.e1.

  • Kitamura, N., Semler, B.L., Rothberg, P.G., Larsen, G.R., Adler, C.J., et al., 1981. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291, 547–553.

  • Kouzarides, T., 2007. Chromatin modifications and their function. Cell 128, 693–705.

  • Lieberman, P.M., 2006. Chromatin regulation of virus infection. Trends Microbiol. 14, 132–140.

  • Matthews, D.A., Smith, W.W., Ferre, R.A., Condon, B., Budahazi, G., et al., 1994. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77, 761–771.

  • McMinn, P.C., 2002. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol. Rev. 26, 91–107.

  • Murata, T., Kondo, Y., Sugimoto, A., et al., 2012. Epigenetic histone modification of Epstein-Barr virus BZLF1 promoter during latency and reactivation in Raji cells. J. Virol. 86, 4752–4761.

  • O'Connor, C.M., DiMaggio Jr., P.A., Shenk, T., Garcia, B.A., 2014. Quantitative proteomic discovery of dynamic epigenome changes that control human cytomegalovirus(HCMV) infection. Mol. Cell. Proteomics 13, 2399–2410.

  • Oberste, M.S., Maher, K., Kilpatrick, D.R., Pallansch, M.A., 1999. Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J. Virol. 73, 1941–1948.

  • Placek, B.J., Huang, J., Kent, J.R., Dorsey, J., Rice, L., Fraser, N.W., Berger, S.L., 2009. The histone variant H3.3 regulates gene expression during lytic infection with herpes simplex virus type 1. J. Virol. 83, 1416–1421.

  • Rose, J.K., Trachsel, H., Leong, K., Baltimore, D., 1978. Inhibition of translation by poliovirus: inactivation of a specific initiation factor. Proc. Natl. Acad. Sci. U.S.A. 75, 2732–2736.

  • Schmidt, N.J., Lennette, E.H., Ho, H.H., 1974. An apparently new enterovirus isolated from patients with disease of the central nervous system. J. Infect. Dis. 129, 304–309.

  • Sharma, R., Raychaudhuri, S., Dasgupta, A., 2004. Nuclear entry of poliovirus protease polymerase precursor 3CD: implications for host cell transcription shutoff. Virology 320, 195–205.

  • Shih, S.R., Chiang, C., Chen, T.C., Wu, C.N., Hsu, J.T., Lee, J.C., Hwang, M.J., Li, M.L., Chen, G.W., Ho, M.S., 2004. Mutations at KFRDI and VGK domains of enterovirus 71 3C protease affect its RNA binding and proteolytic activities. J. Biomed. Sci. 11, 239–248.

  • Solomon, T., Lewthwaite, P., Perera, D., Cardosa, M.J., McMinn, P., Ooi, M.H., 2010. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect. Dis. 10, 778–790.

  • Weidman, M.K., Yalamanchili, P., Ng, B., Tsai, W., Dasgupta, A., 2001. Poliovirus 3C protease-mediated degradation of transcriptional activator p53 requires a cellular activity. Virology 291, 260–271.

  • Weng, K.F., Li, M.L., Hung, C.T., Shih, S.R., 2009. Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation. PLoS Pathog. 5, e1000593.