-
Aebi U, Cohn J, Buhle L. The nuclear lamina is a meshwork of intermediate-type filaments[J]. Nature, 1986, 323(): 560-564. doi: 10.1038/323560a0
-
al-Kobaisi M F, Rixon F J, McDougall I. The herpes simplex virus UL33 gene product is required for the assembly of full capsids[J]. Virology, 1991, 180(): 380-388. doi: 10.1016/0042-6822(91)90043-B
-
Baines J D, Roizman B. The UL11 gene of herpes simplex virus 1 encodes a function that facilitates nucleo-capsid envelopment and egress from cells[J]. J Virol, 1992, 66(): 5168-5174.
-
Baines J D, Ward P L, Campadelli-Fiume G. The UL20 gene of herpes simplex virus 1 encodes a function necessary for viral egress[J]. J Virol, 1991, 65(): 6414-6424.
-
Bjerke S L, Roller R. Roles for herpes simplex type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress[J]. Virology, 2006, 347(2): 261-276. doi: 10.1016/j.virol.2005.11.053
-
Calistri A, Sette P, Salata C. Intracellular trafficking and maturation of herpes simplex virus type 1 gB and virus egress require functional biogenesis of multivesicular bodies[J]. J Virol, 2007, 81(): 11468-11478. doi: 10.1128/JVI.01364-07
-
Chang Y E V S, Krug C, Sears P W, Roizman A E B. The null mutant of the U(L)31 gene of herpes simplex virus 1: construction and phenotype in infected cells[J]. J Virol, 1997, 71(): 8307-8315.
-
Chen B J, Lamb R A. Mechanisms for enveloped virus budding: can some viruses do without an ESCRT?[J]. Virology, 2008, 372(): 221-232. doi: 10.1016/j.virol.2007.11.008
-
Church , G A, Wilson D W. Study of herpes simplex virus maturation during a synchronous wave of assembly[J]. J Virol, 1997, 71(): 3603-3612.
-
Coller K E, Lee J I, Ueda A. The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins[J]. J Virol, 2007, 81(): 11790-11797. doi: 10.1128/JVI.01113-07
-
Courvalin J C, Segil N, Blobel G. The lamin B receptor of the inner nuclear membrane undergoes mitosis-specific phosphorylation and is a substrate for p34cdc2-type protein kinase[J]. J Biol Chem, 1992, 267(): 19035-19038.
-
Crump C M, Yates C, Minson T. Herpes simplex virus type 1 cytoplasmic envelopment requires functional Vps4[J]. J Virol, 2007, 81(): 7380-7387. doi: 10.1128/JVI.00222-07
-
Darlington R W, Moss L H. Herpesvirus envelop-ment[J]. J Virol, 1968, 2(): 49-55.
-
Dechat T, Gotzmann J, Stockinger A. Detergent-salt resistance of LAP2alpha in interphase nuclei and phosphorylation-dependent association with chromo-somes early in nuclear assembly implies functions in nuclear structure dynamics[J]. EMBO J, 1998, 17(): 4887-4902. doi: 10.1093/emboj/17.16.4887
-
Desai P, Sexton G L, McCaffery J M. A null mutation in the gene encoding the herpes simplex virus type 1 UL37 polypeptide abrogates virus maturation[J]. J Virol, 2001, 75(): 10259-10271. doi: 10.1128/JVI.75.21.10259-10271.2001
-
Desai P J. A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells[J]. J Virol, 2000, 74(): 11608-11618. doi: 10.1128/JVI.74.24.11608-11618.2000
-
Dreger M, Otto H, Neubauer G. Identification of phosphorylation sites in native lamina-associated polypeptide 2 beta[J]. Biochemistry, 1999, 38(): 9426-9434. doi: 10.1021/bi990645f
-
Ellis J A, Craxton M, Yates J R. Aberrant intracellular targeting and cell cycle-dependent phosphory-lation of emerin contribute to the Emery-Dreifuss muscular dystrophy phenotype[J]. J Cell Sci, 1998, 111(): 781-792.
-
Falke D, Siegert R, Vogell W. Electron microscopic findings on the problem of double membrane formation in herpes simplex virus[J]. Arch Gesamte Virusforsch, 1959, 9(): 484-496. doi: 10.1007/BF01242855
-
Farnsworth A, Wisner T W, Webb M. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane[J]. Proc Natl Acad Sci USA, 2007, 104(): 10187-10192. doi: 10.1073/pnas.0703790104
-
Feierbach B, Piccinotti S, Bisher M. Alpha-herpesvirus infection induces the formation of nuclear actin filaments[J]. PLoS Pathogens, 2006, 2(): e85-. doi: 10.1371/journal.ppat.0020085
-
Foisner R, Gerace L. Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation[J]. Cell, 1993, 73(): 1267-1279. doi: 10.1016/0092-8674(93)90355-T
-
Forest T, Barnard S, Baines J D. Active intranu-clear movement of herpesvirus capsids[J]. Nat Cell Biol, 2005, 7(): 429-431. doi: 10.1038/ncb1243
-
Foster T P, Melancon J M, Baines J D. The herpes simplex virus type 1 UL20 protein modulates membrane fusion events during cytoplasmic virion morpho-genesis and virus-induced cell fusion[J]. J Virol, 2004, 78(): 5347-5357. doi: 10.1128/JVI.78.10.5347-5357.2004
-
Fuchs W, Klupp B G, Granzow H. The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions[J]. J Virol, 2002, 76(): 364-378. doi: 10.1128/JVI.76.1.364-378.2002
-
Fulmer P A, Melancon J M, Baines J D. UL20 protein functions precede and are required for the UL11 functions of herpes simplex virus type 1 cytoplasmic virion envelopment[J]. J Virol, 2007, 81(): 3097-3108. doi: 10.1128/JVI.02201-06
-
Granzow H, Klupp B G, Fuchs W. Egress of alphaherpesviruses: comparative ultrastructural study[J]. J Virol, 2001, 75(): 3675-3684. doi: 10.1128/JVI.75.8.3675-3684.2001
-
Gruenbaum Y, Margalit A, Goldman R D. The nuclear lamina comes of age[J]. Nat Rev Mol Cell Biol, 2005, 6(): 21-31. doi: 10.1038/nrm1550
-
Heald R, McKeon F. Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis[J]. Cell, 1990, 61(): 579-589. doi: 10.1016/0092-8674(90)90470-Y
-
Hofemeister H, O'Hare P. Nuclear pore com-position and gating in herpes simplex virus-infected cells[J]. J Virol, 2008, 82(): 8392-8399. doi: 10.1128/JVI.00951-08
-
Holmer L, Worman H J. Inner nuclear membrane proteins: functions and targeting[J]. Cell Mol Life Sci, 2001, 58(): 1741-1747. doi: 10.1007/PL00000813
-
Jing X, Cerveny M, Yang K. Replication of herpes simplex virus 1 depends on the gamma 134.5 functions that facilitate virus response to interferon and egress in the different stages of productive infection[J]. J Virol, 2004, 78(): 7653-7666. doi: 10.1128/JVI.78.14.7653-7666.2004
-
Klupp B, Altenschmidt J, Granzow H. Glycoproteins required for entry are not necessary for egress of pseudorabies virus[J]. J Virol, 2008, 82(): 6299-6309. doi: 10.1128/JVI.00386-08
-
Klupp B G, Granzow H, Fuchs W. Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins[J]. Proc Natl Acad Sci USA, 2007, 104(): 7241-7246. doi: 10.1073/pnas.0701757104
-
Klupp B G, Granzow H, Keil G M. The capsid-associated UL25 protein of the alphaherpesvirus pseudorabies virus is nonessential for cleavage and encapsidation of genomic DNA but is required for nuclear egress of capsids[J]. J Virol, 2006, 80(): 6235-6346. doi: 10.1128/JVI.02662-05
-
Klupp B G, Granzow H, Mettenleiter T C. Effect of the pseudorabies virus US3 protein on nuclear membrane localization of the UL34 protein and virus egress from the nucleus[J]. J Gen Virol, 2001, 82(): 2363-2371. doi: 10.1099/0022-1317-82-10-2363
-
Klupp B G, Granzow H, Mettenleiter T C. Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product[J]. J Virol, 2000, 74(): 10063-10073. doi: 10.1128/JVI.74.21.10063-10073.2000
-
Lake C M, Hutt-Fletcher L M. The Epstein-Barr virus BFRF1 and BFLF2 proteins interact and coexpression alters their cellular localization[J]. Virology, 2004, 320(): 99-106. doi: 10.1016/j.virol.2003.11.018
-
Leach N, Bjerke S L, Christensen D K. Emerin is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent on both UL34 and US3[J]. J Virol, 2007, 81(): 10792-10803. doi: 10.1128/JVI.00196-07
-
Leuzinger H, Ziegler U, Schraner E M. Herpes simplex virus 1 envelopment follows two diverse pathways[J]. J Virol, 2005, 79(): 13047-13059. doi: 10.1128/JVI.79.20.13047-13059.2005
-
Liang L, Baines J D. Identification of an essential domain in the herpes simplex virus 1 UL34 protein that is necessary and sufficient to interact with UL31 protein[J]. J Virol, 2005, 79(): 3797-3806. doi: 10.1128/JVI.79.6.3797-3806.2005
-
Luxton G W, Lee J I, Haverlock-Moyns S. The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport[J]. J. Virol, 2006, 80(): 201-209. doi: 10.1128/JVI.80.1.201-209.2006
-
McNab A R D, Person P, Roof S. The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA[J]. J Virol, 1998, 72(): 1060-1070.
-
Mettenleiter T C, Minson T. Egress of Alpha-herpesviruses[J]. J Virol, 2006, 80(): 1610-1611. doi: 10.1128/JVI.80.3.1610-1612.2006
-
Morris J B, Hofemeister H, O'Hare P. Herpes simplex virus infection induces phosphorylation and delocalization of emerin, a key inner nuclear membrane protein[J]. J Virol, 2007, 81(): 4429-4437. doi: 10.1128/JVI.02354-06
-
Mou F, Forest T, Baines J D. Us3 of Herpes Simplex type 1 Encodes a Promiscuous Protein Kinase That Phosphorylates and Alters Localization of Lamin A/C in Infected Cells[J]. J Virol, 2007, 81(): 6459-6470. doi: 10.1128/JVI.00380-07
-
Muranyi W, Haas J, Wagner M. Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina[J]. Science, 2002, 297(): 854-857. doi: 10.1126/science.1071506
-
Panorchan P, Schafer B W, Wirtz D. Nuclear envelope breakdown requires overcoming the mechanical integrity of the nuclear lamina[J]. J Biol Chem, 2004, 279(): 43462-43467. doi: 10.1074/jbc.M402474200
-
Park R, Baines J. Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase C to the nuclear membrane and increased phosphorylation of lamin B[J]. J Virol, 2006, 80(): 494-504. doi: 10.1128/JVI.80.1.494-504.2006
-
Patrizi G, Middelkamp J N, Reed C A. Reduplication of nuclear membranes in tissue-culture cells infected with guinea-pig cytomegalovirus[J]. Am J Pathol, 1967, 50(): 779-790.
-
Peter M, Nakagawa J, Doree M. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase[J]. Cell, 1990, 61(): 591-602. doi: 10.1016/0092-8674(90)90471-P
-
Poon A P, Roizman B. Characterization of a temperature-sensitive mutant of the UL15 open reading frame of herpes simplex virus 1[J]. J Virol, 1993, 67(): 4497-5503.
-
Rémillard-Labrosse G, Guay G, Lippé R. Reconstitution of herpes simplex virus type 1 nuclear capsid egress in vitro[J]. J Virol, 2006, 80(): 9741-9753. doi: 10.1128/JVI.00061-06
-
Reynolds A E, Liang L, Baines J D. Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes UL31 and UL34[J]. J Virol, 2004, 78(): 5564-5575. doi: 10.1128/JVI.78.11.5564-5575.2004
-
Reynolds A E, Ryckman B J, Baines J D. UL31 and UL34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids[J]. J Virol, 2001, 75(): 8803-8817. doi: 10.1128/JVI.75.18.8803-8817.2001
-
Reynolds A E, Wills E G, Roller R J. Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids[J]. J Virol, 2002, 76(): 8939-8952. doi: 10.1128/JVI.76.17.8939-8952.2002
-
Roizman B, Sears A E. 1996. Herpes simplex viruses and their replication, In: Fields Virology(Fields B N, Knipe D M, Howley P M, et al ed.), Third edition ed, vol. 2. Lippincott-Raven Publishers: Philadelphia, USA, p2231-2295.
-
Roller R J, Zhou Y, Schnetzer R. Herpes simplex virus type 1 UL34 gene product is required for viral envelopment[J]. J Virol, 2000, 74(): 117-129. doi: 10.1128/JVI.74.1.117-129.2000
-
Ruebner B H, Miyai K, Slusser R J. Mouse cytomegalovirus infection. An electron microscopic study of hepatic parenchymal cells[J]. Am J Pathol, 1964, 44(): 799-821.
-
Ryckman B J, Roller R J. Herpes simplex virus type 1 primary envelopment: UL34 protein modification and the US3-UL34 catalytic relationship[J]. J Virol, 2004, 78(): 399-412. doi: 10.1128/JVI.78.1.399-412.2004
-
Salmon B, Cunningham C, Davison A J. The herpes simplex virus type 1 U (L)17 gene encodes virion tegument proteins that are required for cleavage and packaging of viral DNA[J]. J Virol, 1998, 72(): 3779-3788.
-
Santarelli R, Farina A, Granato M. Identification and characterization of the product encoded by ORF69 of Kaposi's sarcoma-associated herpesvirus[J]. J Virol, 2008, 82(): 4562-4572. doi: 10.1128/JVI.02400-07
-
Schnee M, Ruzsics Z, Bubeck A. Common and Specific Properties of Herpesvirus UL34/UL31 Protein Family Members Revealed by Protein Complementation Assay[J]. J Virol, 2006, 80(): 11658-11666. doi: 10.1128/JVI.01662-06
-
Schumacher D, Tischer B K, Trapp S. The protein encoded by the US3 orthologue of Marek's disease virus is required for efficient de-envelopment of perinu-clear virions and involved in actin stress fiber breakdown[J]. J Virol, 2005, 79(): 3987-3997. doi: 10.1128/JVI.79.7.3987-3997.2005
-
Shipkey F H, Erlandson R A, Bailey R B. Virus biographies. Ⅱ. Growth of herpes simplex virus in tissue culture[J]. Exp Mol Pathol, 1967, 6(): 39-67. doi: 10.1016/0014-4800(67)90005-6
-
Siminoff P, Menefee M G. Normal and 5-bromo-deoxyuridine-inhibited development of herpes simplex virus. An electron microscope study[J]. Exp Cell Res, 1966, 44(): 241-255. doi: 10.1016/0014-4827(66)90429-0
-
Simpson-Holley M, Colgrove R C, Nalepa G. Identification and Functional Evaluation of Cellular and Viral Factors Involved in the Alteration of Nuclear Architecture during Herpes Simplex Virus 1 Infection[J]. J Virol, 2005, 79(): 12840-12851. doi: 10.1128/JVI.79.20.12840-12851.2005
-
Simpson-Holly M, Baines J, Roller R. Herpes simplex virus 1 UL31 and UL34 promote the late maturation of viral replication compartments to the nuclear periphery[J]. J Virol, 2004, 78(): 5591-5600. doi: 10.1128/JVI.78.11.5591-5600.2004
-
Skepper J N, Whiteley A, Browne H. Herpes simplex virus nucleocapsids mature to progeny virions by an envelopment -- > deenvelopment -- > reenvelopment pathway[J]. J Virol, 2001, 75(): 5697-5702. doi: 10.1128/JVI.75.12.5697-5702.2001
-
Stackpole C W. Herpes-type virus of the frog renal adenocarcinoma. Ⅰ. Virus development in tumor transplants maintained at low temperature[J]. J Virol, 1969, 4(): 75-93.
-
Stoker M G, Smith K M, Ross R W. Electron microscope studies of HeLa cells infected with herpes virus[J]. J Gen Microbiol, 1958, 19(): 244-249. doi: 10.1099/00221287-19-2-244
-
Trus B L, Newcomb W W, Cheng N. Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-Filled HSV-1 capsids[J]. Mol Cell, 2007, 26(): 479-489. doi: 10.1016/j.molcel.2007.04.010
-
Tseng Y, Lee J S, Kole T P. Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking[J]. J Cell Sci, 2004, 117(): 2159-2167. doi: 10.1242/jcs.01073
-
Ward P L, Ogle W O, Roizman B. Assemblons: nuclear structures defined by aggregation of immature capsids and some tegument proteins of herpes simplex virus 1[J]. J Virol, 1996, 70(): 4623-4631.
-
Whiteley A, Bruun B, Minson T. Effects of targeting herpes simplex virus type 1 gD to the endo-plasmic reticulum and trans-Golgi network[J]. J Virol, 1999, 73(): 9515-9520.
-
Wild P, Engels M, Senn C. Impairment of nuclear pores in bovine herpesvirus 1-infected MDBK cells[J]. J Virol, 2005, 79(): 1071-1083. doi: 10.1128/JVI.79.2.1071-1083.2005
-
Worman H J, Courvalin J C. Nuclear envelope, nuclear lamina, and inherited disease[J]. Int Rev Cytol, 2005, 246(): 231-279. doi: 10.1016/S0074-7696(05)46006-4