• Ablasser, A., Bauernfeind, F., Hartmann, G., Latz, E., Fitzgerald, K.A., Hornung, V., 2009.RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 10, 1065-U1040.

  • Afonso, C.L., Piccone, M.E., Zaffuto, K.M., Neilan, J., Kutish, G.F., Lu, Z., Balinsky, C.A., Gibb, T.R., Bean, T.J., Zsak, L., Rock, D.L., 2004. African swine fever virus multigene family 360 and 530 genes affect host interferon response. J. Virol. 78, 1858-1864.

  • Alonso, C., Galindo, I., Cuesta-Geijo, M.A., Cabezas, M., Hernaez, B., Munoz-Moreno, R., 2013. African swine fever virus-cell interactions:from virus entry to cell survival.Virus Res. 173, 42-57.

  • Chenais, E., Depner, K., Guberti, V., Dietze, K., Viltrop, A., Ståhl, K., 2019.Epidemiological considerations on African swine fever in Europe 2014-2018. Porcine Health Manag. 5, 6.

  • Chilvers, M.A., Mckean, M., Rutman, A., Myint, B.S., Silverman, M., O"Callaghan, C., 2001. The effects of coronavirus on human nasal ciliated respiratory epithelium. Eur.Respir. J. 18, 965-970.

  • Choksi, S.P., Lauter, G., Swoboda, P., Roy, S., 2014. Switching on cilia:transcriptional networks regulating ciliogenesis. Development 141, 1427.

  • Coffer, P.J., Burgering, B.M.T., 2004. Forkhead-box transcription factors and their role in the immune system. Nat. Rev. Immunol. 4, 889-899.

  • Costard, S., Mur, L., Lubroth, J., Sanchez-Vizcaino, J., Pfeiffer, D., 2013. Epidemiology of African swine fever virus. Virus Res. 173, 191-197.

  • de Wit, E., van Doremalen, N., Falzarano, D., Munster, V., 2016. SARS and MERS:recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523-534.

  • Fu, Y., Tong, J., Meng, F., Hoeltig, D., Liu, G., Yin, X., Herrler, G., 2018. Ciliostasis of airway epithelial cells facilitates influenza A virus infection. Vet. Res. 49, 65.

  • Gassmann, M., Grenacher, B., Rohde, B., Vogel, J., 2009. Quantifying western blots:pitfalls of densitometry. Electrophoresis 30, 1845-1855.

  • Golding, J., Goatley, L., Goodbourn, S., Dixon, L., Taylor, G., Netherton, C., 2016.Sensitivity of African swine fever virus to type I interferon is linked to genes within multigene families 360 and 505. Virology 493, 154-161.

  • Gordon, S., Clarke, S., Greaves, D., Doyle, A., 1995. Molecular immunobiology of macrophages-recent progress. Curr. Opin. Immunol. 7, 24-33.

  • Griggs, T.F., Bochkov, Y.A., Basnet, S., Pasic, T.R., Brockman-Schneider, R.A., Palmenberg, A.C., Gern, J.E., 2017. Rhinovirus C targets ciliated airway epithelial cells. Respir. Res. 18, 84.

  • Hopfner, K.P., Hornung, V., 2020. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat. Rev. Mol. Cell Biol. 1-21.

  • Jia, N., Ou, Y., Pejsak, Z., Zhang, Y., Zhang, J., 2017. Roles of African swine fever virus structural proteins in viral infection. J. Vet. Res. 61, 135-143.

  • Jonsson, H., Peng, S.L., 2005. Forkhead transcription factors in immunology. Cell. Mol.Life Sci. 62, 397-409.

  • Kim, N., Kim, M.J., Sung, P.S., Bae, Y.C., Shin, E.C., Yoo, J.Y., 2016. Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A. Nat. Commun. 7, 10631.

  • Kuek, L.E., Lee, R.J., 2020. First contact:the role of respiratory cilia in host-pathogen interactions in the airways. Am. J. Physiol. Lung Cell Mol. Physiol. 319, L603-l619.

  • Li, C.Y., Chai, Y., Song, H., Weng, C.J., Qi, J.X., Sun, Y.P., Gao, G.F., 2019. Crystal structure of African swine fever virus dUTPase reveals a potential drug target. mBio 10.

  • Li, D., Zhang, J., Yang, W., Li, P., Ru, Y., Kang, W., Li, L., Ran, Y., Zheng, H., 2021a.African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1-and JAK2-mediated signaling. J. Biol. Chem. 297, 101190.

  • Li, G., Liu, X., Yang, M., Zhang, G., Wang, Z., Guo, K., Gao, Y., Jiao, P., Sun, J., Chen, C., Wang, H., Deng, W., Xiao, H., Li, S., Wu, H., Wang, Y., Cao, L., Jia, Z., Shang, L., Yang, C., Guo, Y., Rao, Z., 2020. Crystal structure of African swine fever virus pS273R protease and implications for inhibitor design. J. Virol. 94, e02125-19.

  • Li, J., Song, J., Kang, L., Huang, L., Zhou, S., Hu, L., Zheng, J., Li, C., Zhang, X., He, X., Zhao, D., Bu, Z., Weng, C., 2021b. pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production. PLoS Pathog. 17, e1009733.

  • Li, W., Zhu, Z., Cao, W., Yang, F., Zhang, X., Li, D., Zhang, K., Li, P., Mao, R., Liu, X., 2016.Esterase D enhances type I interferon signal transduction to suppress foot-and-mouth disease virus replication. Mol. Immunol. 75, 112-121.

  • Lin, L., Brody, S.L., Peng, S.L., 2005. Restraint of B cell activation by Foxj1-mediated antagonism of NF-kappa B and IL-6. J. Immunol. 175, 951-958.

  • Lin, L., Spoor, M.S., Gerth, A.J., Brody, S.L., Peng, S.L., 2004. Modulation of Th1 activation and inflammation by the NF-kappaB repressor Foxj1. Science 303, 1017-1020.

  • Liu, H., Li, K., Chen, W., Yang, F., Cao, W., Zhang, K., Li, P., Tang, L., Zhu, Z., Zheng, H., 2022. Senecavirus A 2B protein suppresses type I interferon production by inducing the degradation of MAVS. Mol. Immunol. 142, 11-21.

  • Liu, H., Zhu, Z., Feng, T., Ma, Z., Xue, Q., Wu, P., Li, P., Li, S., Yang, F., Cao, W., Xue, Z., Chen, H., Liu, X., Zheng, H., 2021. African swine fever virus E120R protein inhibits interferon-β production by interacting with IRF3 to block its activation. J. Virol. 95, e0082421.

  • Look, D.C., Walter, M.J., Williamson, M.R., Pang, L., You, Y., Sreshta, J.N., Johnson, J.E., Zander, D.S., Brody, S.L., 2001. Effects of paramyxoviral infection on airway epithelial cell Foxj1 expression, ciliogenesis, and mucociliary function. Am. J. Pathol. 159, 2055-2069.

  • Malmquist, W.A., Hay, D., 1960. Hemadsorption and cytopathic effect produced by African Swine Fever virus in swine bone marrow and buffy coat cultures. Am. J. Vet. Res. 21, 104-108.

  • Mata, M., Sarrion, I., Armengot, M., Carda, C., Martinez, I., Melero, J.A., Cortijo, J., 2012. Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells:effectiveness of N-acetylcysteine. PLoS One 7, e48037.

  • Mauthe, M., Orhon, I., Rocchi, C., Zhou, X., Luhr, M., Hijlkema, K.-J., Coppes, R.P., Engedal, N., Mari, M., Reggiori, F., 2018. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 14, 1435-1455.

  • Mossessova, E., Lima, C.D., 2000. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865-876.

  • Mukhopadhyay, S., Kuhn, R.J., Rossmann, M.G., 2005. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3, 13-22.

  • Mulumba-Mfumu, L., Saegerman, C., Dixon, L., Madimba, K., Kazadi, E., Mukalakata, N., Oura, C., Chenais, E., Masembe, C., Ståhl, K., Thiry, E., Penrith, M., 2019. African swine fever:update on eastern, central and southern Africa. Transbound. Emerg. Dis. 66, 1462-1480.

  • Petiot, A., Ogier-Denis, E., Blommaart, E.F.C., Meijer, A.J., Codogno, P., 2000. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275, 992-998.

  • Pruneda, J., Durkin, C., Geurink, P., Ovaa, H., Santhanam, B., Holden, D., Komander, D., 2016. The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol. Cell 63, 261-276.

  • Rai, A., Pruitt, S., Ramirez-Medina, E., Vuono, E.A., Silva, E., Velazquez-Salinas, L., Carrillo, C., Borca, M.V., Gladue, D.P., 2020. Identification of a continuously stable and commercially available cell line for the identification of infectious African swine fever virus in clinical samples. Viruses 12, 820.

  • Rai, K.R., Shrestha, P., Yang, B., Chen, Y., Chen, J.L., 2021. Acute Infection of Viral Pathogens and Their Innate Immune Escape.

  • Reed, L.J., 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27.

  • Sanchez-Cordon, P.J., Montoya, M., Reis, A.L., Dixon, L.K., 2018. African swine fever:a re-emerging viral disease threatening the global pig industry. Vet. J. 233, 41-48.

  • Sanchez, E.G., Riera, E., Nogal, M., Gallardo, C., Fernandez, P., Bello-Morales, R., Antonio Lopez-Guerrero, J., Chitko-McKown, C.G., Richt, J.A., Revilla, Y., 2017. Phenotyping and susceptibility of established porcine cells lines to African Swine Fever Virus infection and viral production. Sci. Rep. 7, 10369.

  • Schmittgen, T.D., Livak, K.J., 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101-1108.

  • Schneider, W.M., Chevillotte, M., Rice, C.M., 2014. Interferon-stimulated genes:a complex web of host defenses. Annu. Rev. Immunol. 32, 513-545.

  • Seglen, P.O., Gordon, P.B., 1982. 3-Methyladenine:specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 79, 1889-1892.

  • Smith, C.M., Kulkarni, H., Radhakrishnan, P., Rutman, A., Bankart, M.J., Williams, G., Hirst, R.A., Easton, A.J., Andrew, P.W., O'Callaghan, C., 2014. Ciliary dyskinesia is an early feature of respiratory syncytial virus infection. Eur. Respir. J. 43, 485-496.

  • Srivatsan, S., Peng, S.L., 2005. Cutting edge:Foxj1 protects against autoimmunity and inhibits thymocyte egress. J. Immunol. (Baltimore, Md:1950) 175, 7805.

  • Stubbs, J.L., Oishi, I., Belmonte, J.I., Kintner, C., 2008. The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat. Genet. 40, 1454-1460.

  • Sumpter, R., Levine, B., 2011. Selective autophagy and viruses. Autophagy 7, 260-265.

  • Sun, N., Jiang, L., Ye, M., Wang, Y., Wang, G., Wan, X., Zhao, Y., Wen, X., Liang, L., Ma, S., Liu, L., Bu, Z., Chen, H., Li, C., 2020. TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2. Protein Cell 11, 894-914.

  • Tao, D., Sun, D., Liu, Y., Wei, S., Yang, Z., An, T., Shan, F., Chen, Z., Liu, J., 2020. One year of African swine fever outbreak in China. Acta Trop. 211, 105602.

  • van Furth, R., Cohn, Z.A., Hirsch, J.G., Humphrey, J.H., Spector, W.G., Langevoort, H.L., 1972. Mononuclear phagocytic system:new classification of macrophages, monocytes and of their cell line. Bull. World Health Organ. 47, 651-658.

  • Wang, S., Yu, M., Liu, A., Bao, Y., Qi, X., Gao, L., Chen, Y., Liu, P., Wang, Y., Xing, L., Meng, L., Zhang, Y., Fan, L., Li, X., Pan, Q., Zhang, Y., Cui, H., Li, K., Liu, C., He, X., Gao, Y., Wang, X., 2021. TRIM25 inhibits infectious bursal disease virus replication by targeting VP3 for ubiquitination and degradation. PLoS Pathog. 17, e1009900.

  • Wu, C., Peluso, J., Shanley, J., Puddington, L., Thrall, R., 2008. Murine cytomegalovirus influences Foxj1 expression, ciliogenesis, and mucus plugging in mice with allergic airway disease. Am. J. Pathol. 172, 714-724.

  • Wu, J.X., Sun, L.J., Chen, X., Du, F.H., Shi, H.P., Chen, C., Chen, Z.J.J., 2013. Cyclic GMPAMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826-830.

  • Xia, P.Y., Wang, S., Gao, P., Gao, G.X., Fan, Z.S., 2016. DNA sensor cGAS-mediated immune recognition. Protein Cell 7, 777-791.

  • Yang, B., Zhang, D., Shi, X., Shen, C., Hao, Y., Zhang, T., Yang, J., Yuan, X., Chen, X., Zhao, D., Cui, H., Li, D., Zhu, Z., Tian, H., Yang, F., Zheng, H., Zhang, K., Liu, X., 2021a. Construction, identification and analysis of the interaction network of African swine fever virus MGF360-9L with host proteins. Viruses 13.

  • Yang, J.P., Li, S.S., Feng, T., Zhang, X.L., Yang, F., Cao, W.J., Chen, H.J., Liu, H.S., Zhang, K.S., Zhu, Z.X., Zheng, H.X., 2021b. African swine fever virus F317L protein inhibits NF-kappa B activation to evade host immune response and promote viral replication. mSphere 6.

  • Zhang, K., Yang, B., Shen, C., Zhang, T., Hao, Y., Zhang, D., Liu, H., Shi, X., Li, G., Yang, J., Li, D., Zhu, Z., Tian, H., Yang, F., Ru, Y., Cao, W.J., Guo, J., He, J., Zheng, H., Liu, X., 2022. MGF360-9L is a major virulence factor Associated with the African swine fever virus by antagonizing the JAK/STAT signaling pathway. mBio 13, e0233021.

  • Zhang, S., Wang, R., Zhu, X.J., Jin, J.X., Lu, W.L., Zhao, X.Y., Wan, B., Liao, Y.F., Zhao, Q., Netherton, C.L., Zhuang, G.Q., Sun, A.J., Zhang, G.P., 2021. Identification and characterization of a novel epitope of ASFV-encoded dUTPase by monoclonal antibodies. Viruses-Basel 13.

  • Zhang, Z.Q., Yuan, B., Bao, M.S., Lu, N., Kim, T., Liu, Y.J., 2011. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12, 959-U962.

  • Zhao, G., Li, T., Liu, X., Zhang, T., Zhang, Z., Kang, L., Song, J., Zhou, S., Chen, X., Wang, X., Li, J., Huang, L., Li, C., Bu, Z., Zheng, J., Weng, C., 2022. African swine fever virus cysteine protease pS273R inhibits pyroptosis by noncanonically cleaving gasdermin D. J. Biol. Chem. 298, 101480.

  • Zsak, L., Lu, Z., Burrage, T.G., Neilan, J.G., Kutish, G.F., Moore, D.M., Rock, D.L., 2001. African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants. J. Virol. 75, 3066-3076.