• Andreano, E., Piccini, G., Licastro, D., Casalino, L., Rappuoli, R., 2021. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. Proc. Natl. Acad. Sci. U. S. A. 118, e2103154118.

  • Barnes, C.O., Jette, C.A., Abernathy, M.E., Dam, K.A., Esswein, S.R., Gristick, H.B., Malyutin, A.G., Sharaf, N.G., Huey-Tubman, K.E., Lee, Y.E., Robbiani, D.F., Nussenzweig, M.C., West Jr., A.P., Bjorkman, P.J., 2020. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682-687.

  • Callaway, E., 2021. Heavily mutated Omicron variant puts scientists on alert. Nature 600, 21.

  • Cao, Y., Wang, J., Jian, F., Xiao, T., Song, W., Yisimayi, A., Huang, W., Li, Q., Wang, P., An, R., 2021. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657-663.

  • Chen, J., Wang, R., Gilby, N.B., Wei, G.W., 2021. Omicron Variant (B.1.1.529):infectivity, vaccine breakthrough, and antibody resistance. J. Chem. Inf. Model. 62, 412-422.

  • DeFrancesco, L., 2020. COVID-19 antibodies on trial. Nat. Biotechnol. 38, 1242-1252.

  • Drożdżal, S., Rosik, J., Lechowicz, K., Machaj, F., Szostak, B., Przybyciński, J., Lorzadeh, S., Kotfis, K., Ghavami, S., Łos, M.J., 2021. An Update on Drugs with Therapeutic Potential for SARS-CoV-2 (COVID-19) Treatment. Drug Resist Updat, p. 100794.

  • Du, L., Zhao, G., He, Y., Guo, Y., Zheng, B.J., Jiang, S., Zhou, Y., 2007. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine 25, 2832-2838.

  • Food and Drug Administration (FDA). Emergency use authorization. https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-frame work/emergency-use-authorization. (Accessed 22 January 2022).

  • Food and Drug Administration (FDA) FDA NEWS RELEASE. Coronavirus (COVID-19) update:FDA authorizes new long-acting monoclonal antibodies for pre-exposure prevention of COVID-19 in certain individuals. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-new-long-acting-monoclonal-antibodies-pre-exposure. (Accessed 22 January 2022).

  • GISAID, 2022. SARS-CoV-2 (hCoV-19) mutation reports. https://outbreak.info/. (Accessed 22 January 2022), 2022.

  • Hassan, A.O., Case, J.B., Winkler, E.S., Thackray, L.B., Kafai, N.M., Bailey, A.L., McCune, B.T., Fox, J.M., Chen, R.E., Alsoussi, W.B., 2020. A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell 182, 744-753 e4.

  • He, Y., Zhou, Y., Liu, S., Kou, Z., Li, W., Farzan, M., Jiang, S., 2004. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies:implication for developing subunit vaccine. Biochem. Biophys. Res. Commun. 324, 773-781.

  • Hoffmann, M., Krüger, N., Schulz, S., Cossmann, A., Rocha, C., Kempf, A., Nehlmeier, I., Graichen, L., Moldenhauer, A.S., Winkler, M.S., 2021. The Omicron variant is highly resistant against antibody-mediated neutralization-implications for control of the COVID-19 pandemic. Cell 185, 447-456 e11.

  • Iwasaki, A., 2016. Exploiting mucosal immunity for antiviral vaccines. Annu. Rev. Immunol. 34, 575-608.

  • Jiang, S., Bottazzi, M., Du, L., Lustigman, S., Tseng, C., Curti, E., Jones, K., Zhan, B., Hotez, P.J., 2012. Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome. Expert Rev. Vaccines 11, 1405-1413.

  • Kissler, S.M., Tedijanto, C., Goldstein, E., Grad, Y.H., Lipsitch, M., 2020. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 368, 860-868.

  • Kreuzberger, N., Hirsch, C., Chai, K.L., Tomlinson, E., Khosravi, Z., Popp, M., Neidhardt, M., Piechotta, V., Salomon, S., Valk, S.J., 2021. SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19. Cochrane Database Syst. Rev. 9, CD013825.

  • Ku, Z., Xie, X., Hinton, P.R., Liu, X., An, Z., 2021. Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants. Nature 595, 718-723.

  • Kwon, D., 2021. Antibody-laden nasal spray could provide COVID protection and treatment. Nature. https://doi.org/10.1038/d41586-021-01481-2.

  • Lei, C., Yang, J., Hu, J., Sun, X., 2021. On the calculation of TCID 50 for quantitation of virus infectivity. Virol. Sin. 36, 141-144.

  • Leyva-Grado, V.H., Tan, G.S., Leon, P.E., Yondola, M., Palese, P., 2015. Direct administration in the respiratory tract improves efficacy of broadly neutralizing antiinfluenza virus monoclonal antibodies. Antimicrob. Agents Chemother. 59, 4162-4172.

  • National Institutes of Health (NIH), 2021. COVID-19 treatment guidelines panel. Coronavirus disease 2019 (COVID-19) treatment guidelines. https://www.Covid19treatmentguidelines.Nih.Gov/. (Accessed 22 January 2022).

  • Piccoli, L., Park, Y.J., Tortorici, M.A., Czudnochowski, N., Veesler, D., 2020. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 183, 1024-1042 e21.

  • Planas, D., Saunders, N., Maes, P., Guivel-Benhassine, F., Planchais, C., Buchrieser, J., Bolland, W.H., Porrot, F., Staropoli, I., Lemoine, F., 2021. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671-675.

  • Qu, Y., Zhang, X., Wang, M., Sun, L., Jiang, Y., Li, C., Wu, W., Chen, Z., Yin, Q., Jiang, X., 2021. Antibody cocktail exhibits broad neutralization against SARS-CoV-2 and SARSCoV-2 variants. Virol. Sin. 36, 934-947.

  • Self, W.H., Sandkovsky, U., Reilly, C.S., Vock, D.M., Gottlieb, R.L., Mack, M., Golden, K., Dishner, E., Vekstein, A., Ko, E.R., 2021. Efficacy and safety of two neutralising monoclonal antibody therapies, sotrovimab and BRII-196 plus BRII-198, for adults hospitalised with COVID-19 (TICO):a randomised controlled trial. Lancet Infect. Dis. S1473-3099 (21), 751-759.

  • Starr, T.N., Greaney, A.J., Addetia, A., Hannon, W.W., Bloom, J.D., 2021. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science 371, 850-854.

  • Sun, S.H., Chen, Q., Gu, H.J., Yang, G., Wang, Y.X., Huang, X.Y., Liu, S.S., Zhang, N.N., Li, X.F., Xiong, R., 2020. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe 28, 124-133 e4.

  • Tiwari, G., Tiwari, R., Bannerjee, S., Bhati, L., Pandey, S., Pandey, P., Sriwastawa, B., 2012. Drug delivery systems:an updated review. Int. J. Pharm. Investig. 2, 2-11.

  • Viana, R., Moyo, S., Amoako, D.G., Tegally, H., Scheepers, C., Althaus, C.L., Anyaneji, U.J., Bester, P.A., Boni, M.F., Chand, M., 2022. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature. https://doi.org/10.1038/s41586-022-04411-y.

  • Wang, N., Shang, J., Jiang, S., Du, L., 2020. Subunit vaccines against emerging pathogenic human coronaviruses. Front. Microbiol. 11, 298.

  • Weisblum, Y., Schmidt, F., Zhang, F., Dasilva, J., Bieniasz, P.D., 2020. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife 9, e61312.

  • World Health Organization (WHO), 2022. Tracking SARS-CoV-2 variants. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. (Accessed 22 January 2022).

  • World Health Organization (WHO), 2021. WHO coronavirus disease (COVID-19) dashboard. https://covid19.who.int/. (Accessed 13 February 2022).

  • Yamin, R., Jones, A.T., Hoffmann, H.H., Schäfer, A., Kao, K.S., Francis, R.L., Sheahan, T.P., Baric, R.S., Rice, C.M., Ravetch, J.V., 2021. Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy. Nature 599, 465-470.