• Al-Hadyan, K., Alsbeih, G., Al-Harbi, N., Judia, S. Bin, Al-Ghamdi, M., Almousa, A., Alsharif, I., Bakheet, R., Al-Romaih, K., Al-Mozaini, M., Al-Ghamdi, S., Moftah, B., Alhmaid, R., 2021. Effect of gamma irradiation on filtering facepiece respirators and SARS-CoV-2 detection. Sci. Rep. 11. https://doi.org/10.1038/s41598-021-99414-6.

  • Bai, C., Zhong, Q., Gao, G.F., 2022. Overview of SARS-CoV-2 genome-encoded proteins. Sci. China Life Sci. 65, 280-294.

  • Boegel, S.J., Gabriel, M., Sasges, M., Petri, B., D'Agostino, M.R., Zhang, A., Ang, J.C., Miller, M.S., Meunier, S.M., Aucoin, M.G., 2021. Robust evaluation of ultraviolet-C sensitivity for SARS-CoV-2 and surrogate coronaviruses. Microbiol. Spectr. 9, 1-10.

  • Brahmakshatriya, V., Lupiani, B., Brinlee, J.L., Cepeda, M., Pillai, S.D., Reddy, S.M., 2009. Preliminary study for evaluation of avian influenza virus inactivation in contaminated poultry products using electron beam irradiation. Avian Pathol. 38, 245-250.

  • Chen, C., Feng, Y., Chen, Z., Xia, Y., Zhao, X., Wang, J., Nie, K., Niu, P., Han, J., Xu, W., 2022. SARS-CoV-2 cold-chain transmission: characteristics, risks, and strategies. J. Med. Virol. 94, 3540-3547.

  • Chi, Y., Wang, Q., Chen, G., Zheng, S., 2021a. The long-term presence of SARS-CoV-2 on cold-chain food packaging surfaces indicates a new COVID-19 winter outbreak: a Mini review. Front. Public Health 9, 1-5.

  • Chi, Y., Zheng, S., Liu, C., Wang, Q., 2021b. Transmission of SARS-CoV-2 on cold-chain food overpacks: a new challenge. J. Glob. Health 11, 1-4.

  • Diehl, J.F., 2002. Food irradiation - past, present and future. Radiat. Phys. Chem. 63, 211-215.

  • Dziedzic-Goclawska, A., Kaminski, A., Uhrynowska-Tyszkiewicz, I., Stachowicz, W., 2005. Irradiation as a safety procedure in tissue banking. Cell Tissue Bank. 6, 201-219.

  • Elliott, L.H., McCormick, J.B., Johnson, K.M., 1982. Inactivation of lassa, marburg, and ebola viruses by gamma irradiation. J. Clin. Microbiol. 16, 704-708.

  • Feng, X.L., Li, B., Lin, H.F., Zheng, H.Y., Tian, R.R., Luo, R.H., Liu, M.Q., Jiang, R. Di, Zheng, Y.T., Shi, Z.L., Bi, Y.H., Yang, X.L., 2021. Stability of SARS-CoV-2 on the surfaces of three meats in the setting that simulates the cold chain transportation. Virol. Sin. 36, 1069-1072.

  • Fisher, D., Reilly, A., Zheng, A.K.E., Cook, A.R., Anderson, D.E., 2020. Seeding of outbreaks of covid-19 by contaminated fresh and frozen food. bioRxiv 2020.08.17.255166. https://doi.org/10.1101/2020.08.17.255166.

  • Gidari, A., Sabbatini, S., Bastianelli, S., Pierucci, S., Busti, C., Bartolini, D., Stabile, A.M., Monari, C., Galli, F., Rende, M., Cruciani, G., Francisci, D., 2021. Sars-cov-2 survival on surfaces and the effect of uv-c light. Viruses 13, 2-9.

  • Grieb, T., Forng, R.Y., Brown, R., Owolabi, T., Maddox, E., Mcbain, A., Drohan, W.N., Mann, D.M., Burgess, W.H., 2002. Effective use of gamma irradiation for pathogen inactivation of monoclonal antibody preparations. Biologicals 30, 207-216.

  • Guo, M., Yan, J., Hu, Y., Xu, L., Song, J., Yuan, K., Cheng, X., Ma, S., Liu, J., Wu, X., Liu, L., Rong, S., Wang, D., 2022. Transmission of SARS-CoV-2 on cold-chain food:precautions can effectively reduce the risk. Food Environ. Virol. 14, 295-303.

  • He, X., Liu, X., Li, P., Wang, P., Chen, H., Li, W., Li, B., Liu, T., Ma, J., 2022. A multi-stage green barrier strategy for the control of global SARS-CoV-2 transmission via. Cold Chain Goods 9, 13-16.

  • Hume, A.J., Ames, J., Rennick, L.J., Duprex, W.P., Marzi, A., Tonkiss, J., Mühlberger, E., 2016. Inactivation of RNA viruses by gamma irradiation: a study on mitigating factors. Viruses 8, 204.

  • Inagaki, H., Saito, A., Sugiyama, H., Okabayashi, T., Fujimoto, S., 2020. Rapid inactivation of SARS-CoV-2 with Deep-UV LED irradiation. Emerg. Microb. Infect. 9, 1744-1747.

  • Jain, R., Sarkale, P., Mali, D., Shete, A., Patil, D., Majumdar, T., Suryawanshi, A., Patil, S., Mohandas, S., Yadav, P., 2021. Inactivation of SARS-CoV-2 by gamma irradiation. Indian J. Med. Res. 153, 196-198.

  • Jarvis, M.C., 2020. Aerosol transmission of SARS-CoV-2: physical principles and implications. Front. Public Health 8, 1-8.

  • Jeong, M.I., Lee, E.J., Park, S.Y., Kim, M.R., Park, S.R., Moon, Y., Choi, C., Ha, J.H., Ha, S. Do, 2021. Assessment of human norovirus inhibition in cabbage kimchi by electron beam irradiation using RT-qPCR combined with immunomagnetic separation. J. Food Sci. 86, 505-512.

  • Kampf, G., Todt, D., Pfaender, S., Steinmann, E., 2020. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 104, 246-251.

  • Korystov Yu, N., 1992. Contributions of the direct and indirect effects of ionizing radiation to reproductive cell death. Radiat. Res. 129, 228-234.

  • Leslie, R.A., Zhou, S.S., Macinga, D.R., 2021. Inactivation of SARS-CoV-2 by commercially available alcohol-based hand sanitizers. Am. J. Infect. Control 49, 401-402.

  • Li, F., Wang, J., Liu, Z., Li, N., 2022. Surveillance of SARS-CoV-2 contamination in frozen food-related samples — China, July 2020 - July 2021. China CDC Wkly 4, 465-470.

  • Liu, P., Yang, M., Zhao, X., Guo, Y., Wang, L., Zhang, J., 2020. Cold-chain transportation in the frozen food industry may have caused a recurrence of COVID-19 cases in destination: successful isolation of SARS-CoV-2 virus from the imported frozen cod package surface. Biosaf Health 2, 199-201.

  • Liu, W., Guan, W., Zhong, N., 2020. Strategies and advances in combating COVID-19 in China. Engineering (Beijing) 6, 1076-1084.

  • Loveday, E.K., Hain, K.S., Kochetkova, I., Hedges, J.F., Robison, A., Snyder, D.T., Brumfield, S.K., Young, M.J., Jutila, M.A., Chang, C.B., Taylor, M.P., 2021. Effect of inactivation methods on sars-cov-2 virion protein and structure. Viruses 13, 562.

  • Ma, H., Wang, Z., Zhao, X., Han, J., Zhang, Y., Wang, H., Chen, C., Wang, J., Jiang, F., Lei, J., Song, J., Jiang, S., Zhu, S., Liu, H., Wang, D., Meng, Y., Mao, N., Wang, Y., Zhu, Z., Chen, Z., Wang, B., Song, Q., Du, H., Yuan, Q., Xia, D., Xia, Z., Liu, P., Wu, Y.A., Feng, Z., Gao, R., Gao, G.F., Xu, W., 2021. Long Distance Transmission of SARS-CoV-2 from Contaminated Cold Chain Products to Humans — Qingdao City, Shandong Province, China, September 2020, vol. 3. China CDC Wkly, pp. 637-644.

  • Mousavi Khaneghah, A., Hashemi Moosavi, M., Oliveira, C.A.F., Vanin, F., Sant'Ana, A.S., 2020. Electron beam irradiation to reduce the mycotoxin and microbial contaminations of cereal-based products: an overview. Food Chem. Toxicol. 143, 111557.

  • Näslund, J., Lagerqvist, N., Lundkvist, Å., Evander, M., Ahlm, C., Bucht, G., 2008. Kinetics of Rift Valley Fever Virus in experimentally infected mice using quantitative real-time RT-PCR. J. Virol. Methods 151, 277-282.

  • Ohshima, H., Iida, Y., Matsuda, A., Kuwabara, M., 1996. Damage induced by hydroxyl radicals generated in the hydration layer of γ-irradiated frozen aqueous solution of DNA. J. Radiat. Res. 37, 199-207.

  • Pan, Y., Zhang, D., Yang, P., Poon, L.L.M., Wang, Q., 2020. Viral load of SARS-CoV-2. Lancet Infect. Dis. 20, 411-412.

  • Peña, M., Ampuero, M., Garcés, C., Gaggero, A., García, P., Velasquez, M.S., Luza, R., Alvarez, P., Paredes, F., Acevedo, J., Farfán, M.J., Solari, S., Soto-Rifo, R., ValienteEcheverría, F., 2020. Performance of SARS-CoV-2 rapid antigen test compared with real-time RT-PCR in asymptomatic individuals. Int. J. Infect. Dis. 107, 201-204.

  • Pillai, S.D., Shayanfar, S., 2017. Electron beam technology and other irradiation technology applications in the food industry. Top. Curr. Chem. 375, 6.

  • Praveen, C., Dancho, B.A., Kingsley, D.H., Calci, K.R., Meade, G.K., Mena, K.D., Pillai, S.D., 2013. Susceptibility of murine norovirus and hepatitis a virus to electron beam irradiation in oysters and quantifying the reduction in potential infection risks. Appl. Environ. Microbiol. 79, 3796-3801.

  • Predmore, A., Sanglay, G.C., DiCaprio, E., Li, J., Uribe, R.M., Lee, K., 2015. Electron beam inactivation of Tulane virus on fresh produce, and mechanism of inactivation of human norovirus surrogates by electron beam irradiation. Int. J. Food Microbiol. 198, 28-36.

  • Preuss, T., Kamstrup, S., Kyvsgaard, N.C., Nansen, P., Miller, A., Lei, J.C., 1997. Comparison of two different methods for inactivation of viruses in serum. Clin. Diagn. Lab. Immunol. 4, 504-508.

  • Ravindran, R., Jaiswal, A.K., 2019. Wholesomeness and safety aspects of irradiated foods. Food Chem. 285, 363-368.

  • Ruetalo, N., Businger, R., Schindler, M., 2021. Rapid, dose-dependent and efficient inactivation of surface dried SARS-CoV-2 by 254 nm UV-C irradiation. Euro Surveill. 26, 2001718.

  • Sellera, F.P., Sabino, C.P., Cabral, F.V., Ribeiro, M.S., 2021. A systematic scoping review of ultraviolet C (UVC) light systems for SARS-CoV-2 inactivation. J. Photochem. Photobiol., A 8, 100068.

  • Smolko, E.E., Lombardo, J.H., 2005. Virus inactivation studies using ion beams, electron and gamma irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 236, 249-253.

  • Sommer, R., Pribil, W., Appelt, S., Gehringer, P., Eschweiler, H., Leth, H., Cabaj, A., Haider, T., 2001. Inactivation of bacteriophages in water by means of non-ionizing(UV-253.7nm) and ionizing (gamma) radiation: a comparative approach. Water Res. 35, 3109-3116.

  • Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y., Zhu, H., Zhao, W., Han, Y., Qin, C., 2019. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 11, 59.

  • Summers, W.C., Szybalski, W., 1967. Gamma-irradiation of deoxyribonucleic acid in dilute solutions: II. Molecular mechanisms responsible for inactivation of phage, its transfecting DNA, and of bacterial transforming activity. J. Mol. Biol. 26, 227-235.

  • Takeda, Y., Uchiumi, H., Matsuda, S., Ogawa, H., 2020. Acidic electrolyzed water potently inactivates SARS-CoV-2 depending on the amount of free available chlorine contacting with the virus. Biochem. Biophys. Res. Commun. 530, 1-3.

  • To, K.K., Tsang, O.T., Leung, W.S., Tam, A.R., Wu, T.C., Lung, D.C., Yip, C.C., Cai, J.P., Chan, J.M., Chik, T.S., Lau, D.P., Choi, C.Y., Chen, L.L., Chan, W.M., Chan, K.H., Ip, J.D., Ng, A.C., Poon, R.W., Luo, C.T., Cheng, V.C., Chan, J.F., Hung, I.F.H., Chen, Z., Chen, H., Yuen, K.Y., 2020. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect. Dis. 20, 565-574.

  • Uema, M., Yonemitsu, K., Momose, Y., Ishii, Y., Tateda, K., Inoue, T., Asakura, H., 2021. Effect of the photocatalyst under visible light irradiation in SARS-CoV-2 stability on an abiotic surface. Biocontrol Sci. 26, 119-125.

  • Ulloa, S., Bravo, C., Ramirez, E., Fasce, R., Fernandez, J., 2021. Inactivation of SARS-CoV-2 isolates from lineages B.1.1.7 (Alpha), P.1 (Gamma) and B.1.110 by heating and UV irradiation. J. Virol. Methods 295, 114216.

  • van Doremalen, N., T, B., Dh, M., Mg, H., A, G., Bn, W., A, T., Jl, H., Nj, T., Si, G., Jo, L.-S., E, de W., Vj, M., 2020. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 382, 1564-1567.

  • Wang, M.Y., Zhao, R., Gao, L.J., Gao, X.F., Wang, D.P., Cao, J.M., 2020. SARS-CoV-2:structure, biology, and structure-based therapeutics development. Front. Cell. Infect. Microbiol. 10, 1-17.

  • Ward, R.L., 1980. Mechanisms of poliovirus inactivation by the direct and indirect effects of ionizing radiation. Radiat. Res. 83, 330-344.

  • Widera, M., Mühlemann, B., Corman, V.M., Toptan, T., Beheim-Schwarzbach, J., Kohmer, N., Schneider, J., Berger, A., Veith, T., Pallas, C., Bleicker, T., Goetsch, U., Tesch, J., Gottschalk, R., Jones, T.C., Ciesek, S., Drosten, C., 2021. Surveillance of sars-cov-2 in frankfurt am main from october to december 2020 reveals high viral diversity including spike mutation n501y in b.1.1.70 and b.1.1.7. Microorganisms 9, 1-10.

  • Zhang, N., Gong, Y., Meng, F., Shi, Y., Wang, J., Mao, P., Xia, C., Bi, Y., Yang, P., Wang, F., 2021. Comparative study on virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients. Sci. China Life Sci. 64, 486-488.