• Ackermann M, Sarmiento M, Roizman B. Application of antibody to synthetic peptides for characterization of the intact and truncated alpha 22 protein specified by herpes simplex virus 1 and the R325 alpha 22-deletion mutant[J]. J Virol, 1985, 56(1): 207-215.

  • Advani S J, Brandimarti R, Weichselbaum R R. The disappearance of cyclins A and B and the increase in activity of the G(2)/M-phase cellular kinase cdc2 in herpes simplex virus 1-infected cells require expression of the alpha22/U (S)1[J]. J Viro, 2000, 174(1): 8-15.

  • Advani S J, Weichselbaum R R, Roizman B. cdc2 cyclin-dependent kinase binds and phosphorylates herpes simplex virus 1 U(L)42 DNA synthesis processivity factor[J]. J Virol, 2001, 75(21): 10326-10333. doi: 10.1128/JVI.75.21.10326-10333.2001

  • Advani S J, Weichselbaum R R, Roizman B. Herpes simplex virus 1 activates cdc2 to recruit topoiso-merase Ⅱ alpha for post-DNA synthesis expression of late genes[J]. Proc Natl Acad Sci U A, 2003, 100(8): 4825-4830. doi: 10.1073/pnas.0730735100

  • Asai R, Ohno T, Kato A. Identification of proteins directly phosphorylated by UL13 protein kinase from herpes simplex virus 1[J]. Microbes Infect, 2007, 9(12-13): 1434-1438. doi: 10.1016/j.micinf.2007.07.008

  • Bastian T W, Rice S A. Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase Ⅱ modification and viral late gene expression[J]. J Virol, 2009, 83(1): 128-139. doi: 10.1128/JVI.01954-08

  • Blaho J A, Zong C S, Mortimer K A. Tyrosine phosphorylation of the herpes simplex virus type 1 regulatory protein ICP22 and a cellular protein which shares antigenic determinants with ICP22[J]. J Virol, 1997, 71(12): 9828-9832.

  • Booher R N, Holman P S, Fattaey A. Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity[J]. J Biol Chem, 1997, 272(35): 22300-22306. doi: 10.1074/jbc.272.35.22300

  • Brandt C R, Kolb A W. Tyrosine 116 of the herpes simplex virus type 1 IEalpha22 protein is an ocular virulence determinant and potential phosphorylation site[J]. Invest Ophthalmol Vis Sci, 2003, 44(11): 4601-4607. doi: 10.1167/iovs.03-0582

  • Bruni R, Roizman B. Herpes simplex virus 1 regulatory protein ICP22 interacts with a new cell cycle-regulated factor and accumulates in a cell cycle-dependent fashion in infected cells[J]. J Virol, 1998, 72(11): 8525-8531.

  • Corden J L, Patturajan M. A CTD function linking transcription to splicing[J]. Trends Biochem Sci, 1997, 22(11): 413-416. doi: 10.1016/S0968-0004(97)01125-0

  • Cun W, Guo L, Zhang Y. Transcriptional regulation of the Herpes Simplex Virus 1alpha-gene by the viral immediate-early protein ICP22 in association with VP16[J]. Sci China C Life Sci, 2009, 52(4): 344-351. doi: 10.1007/s11427-009-0051-2

  • Dai-Ju J Q, Li L, Johnson L A. ICP27 interacts with the C-terminal domain of RNA polymerase Ⅱ and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection[J]. J Virol, 2006, 80(7): 3567-3581. doi: 10.1128/JVI.80.7.3567-3581.2006

  • Durand L O, Advani S J, Poon A P. The carboxyl-terminal domain of RNA polymerase Ⅱ is phosphorylated by a complex containing cdk9 and infected-cell protein 22 of herpes simplex virus 1[J]. J Virol, 2005, 79(11): 6757-6762. doi: 10.1128/JVI.79.11.6757-6762.2005

  • Durand L O, Roizman B. Role of cdk9 in the optimization of expression of the genes regulated by ICP22 of herpes simplex virus 1[J]. J Virol, 2008, 82(21): 10591-10599. doi: 10.1128/JVI.01242-08

  • Egloff S, Murphy S. Role of the C-terminal domain of RNA polymerase Ⅱ in expression of small nuclear RNA genes[J]. Biochem Soc Trans, 2008, 36(Pt 3): 537-539.

  • Fraser K A, Rice S A. Herpes simplex virus type 1 infection leads to loss of serine-2 phosphorylation on the carboxyl-terminal domain of RNA polymerase Ⅱ[J]. J Virol, 2005, 79(17): 11323-11334. doi: 10.1128/JVI.79.17.11323-11334.2005

  • Fraser K A, Rice S A. Herpes simplex virus immediate-early protein ICP22 triggers loss of serine 2-phosphorylated RNA polymerase Ⅱ[J]. J Virol, 2007, 81(10): 5091-5101. doi: 10.1128/JVI.00184-07

  • Fu W, Begley J G, Killen M W. Anti-apoptotic role of telomerase in pheochromocytoma cells[J]. J Biol Chem, 1999, 274(11): 7264-7271. doi: 10.1074/jbc.274.11.7264

  • Hagglund R, Munger J, Poon A P. U(S)3 protein kinase of herpes simplex virus 1 blocks caspase 3 activation induced by the products of U(S)1.5 open reading frame in a cell type-specific manner[J]. J Virol, 2002, 76(2): 743-754. doi: 10.1128/JVI.76.2.743-754.2002

  • Jacob R J, Roizman B. Anatomy of herpes simplex virus DNA Ⅷ. Properties of the replicating DNA[J]. J Virol, 1977, 23(2): 394-411.

  • Kawaguchi Y, Van Sant C, Roizman B. Herpes simplex virus 1 alpha regulatory protein ICP0 interacts with and stabilizes the cell cycle regulator cyclin D3[J]. J Virol, 1997, 71(10): 7328-7336.

  • Leopardi R, Ward P L, Ogle W O. Association of herpes simplex virus regulatory protein ICP22 with transcriptional complexes containing EAP, ICP4, RNA polymerase Ⅱ, and viral DNA requires posttranslational modification by the U(L)13 proteinkinase[J]. J Virol, 1997, 71(2): 1133-1139.

  • Long M C, Leong V, Schaffer P A. ICP22 and the UL13 protein kinase are both required for herpes simplex virus-induced modification of the large subunit of RNA polymerase Ⅱ[J]. J Virol, 1999, 73(7): 5593-5604.

  • Lu H, Flores O, Weinmann R. The nonphosphorylated form of RNA polymerase Ⅱ preferentially associates with the preinitiation complex[J]. Proc Natl Acad Sci USA, 1991, 88(22): 10004-10008. doi: 10.1073/pnas.88.22.10004

  • Markovitz N S. The herpes simplex virus type 1 UL3 transcript starts within the UL3 open reading frame and encodes a 224-amino-acid protein[J]. J Virol, 2007, 81(19): 10524-10531. doi: 10.1128/JVI.00123-07

  • Markovitz N S, Roizman B. Small dense nuclear bodies are the site of localization of herpes simplex virus 1 U(L)3 and U(L)4 proteins and of ICP22 only when the latter protein is present[J]. J Virol, 2000, 74(1): 523-528. doi: 10.1128/JVI.74.1.523-528.2000

  • Mitchell C, Blaho J A, McCormick A L. The nucleotidylylation of herpes simplex virus 1 regulatory protein alpha22 by human casein kinase Ⅱ[J]. J Biol Chem, 1997, 272(40): 25394-25400. doi: 10.1074/jbc.272.40.25394

  • Ng T I, Chang Y E, Roizman B. Infected cell protein 22 of herpes simplex virus 1 regulates the expression of virion host shutoff gene U (L)41[J]. Virology, 1997, 234(2): 226-234. doi: 10.1006/viro.1997.8659

  • O'Toole J M, Aubert M, Kotsakis A. Mutation of the protein tyrosine kinase consensus site in the herpes simplex virus 1 alpha22 gene alters ICP22 posttranslational modification[J]. Virology, 2003, 305(1): 153-167. doi: 10.1006/viro.2002.1746

  • Parker L L, Sylvestre P J, Byrnes M J 3rd. Identification of a 95-kDa WEE1-like tyrosine kinase in HeLa cells[J]. Proc Natl Acad Sci USA, 1995, 92(21): 9638-9642. doi: 10.1073/pnas.92.21.9638

  • Payne J M, Laybourn P J, Dahmus M E. The transition of RNA polymerase Ⅱ from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit Ⅱa[J]. J Biol Chem, 1989, 264(33): 19621-19629.

  • Peng J, Zhu Y, Milton J T. Identification of multiple cyclin subunits of human P-TEFb[J]. Genes Dev, 1998, 12(5): 755-762. doi: 10.1101/gad.12.5.755

  • Poon A P, Roizman B. Herpes simplex virus 1 ICP22 regulates the accumulation of a shorter mRNA and of a truncated US3 protein kinase that exhibits altered functions[J]. J Virol, 2005, 79(13): 8470-8479. doi: 10.1128/JVI.79.13.8470-8479.2005

  • Prod'hon C, Machuca I, Berthomme H. Characterization of regulatory functions of the HSV-1 immediate-early protein ICP22[J]. Virology, 1996, 226(2): 393-402. doi: 10.1006/viro.1996.0667

  • Rice S A, Long M C, Lam V. Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase Ⅱ and establishment of the normal viral transcription program[J]. J Virol, 1995, 69(9): 5550-5559.

  • Rice S A, Long M C, Lam V. RNA polymerase Ⅱ is aberrantly phosphorylated and localized to viral replication compartments following herpes simplex virus infection[J]. J Virol, 1994, 68(2): 988-1001.

  • Spencer C A, Dahmus M E, Rice S A. Repression of host RNA polymerase Ⅱ transcription by herpes simplex virus type 1[J]. J Virol, 1997, 71(3): 2031-2040.

  • Steinmetz E J. Pre-mRNA processing and the CTD of RNA polymerase Ⅱ: the tail that wags the dog?[J]. Cell, 1997, 89(4): 491-494. doi: 10.1016/S0092-8674(00)80230-5

  • Stelz G, Rucker E, Rosorius O. Identification of two nuclear import signals in the alpha-gene product ICP22 of herpes simplex virus 1[J]. Virology, 2002, 295(2): 360-370. doi: 10.1006/viro.2002.1384

  • Van Sant C, Kawaguchi Y, Roizman B. A single amino acid substitution in the cyclin D binding domain of the infected cell protein no. 0 abrogates the neuroinvasiveness of herpes simplex virus without affecting its ability to replicate[J]. Proc Natl Acad Sci USA, 1999, 96(14): 8184-8489. doi: 10.1073/pnas.96.14.8184

  • Ward P L, Taddeo B, Markovitz N S. Identification of a novel expressed open reading frame situated between genes U(L)20 and U(L)21 of the herpes simplex virus 1 genome[J]. Virology, 2000, 266(2): 275-285. doi: 10.1006/viro.1999.0081