• Acharya, A., Kevadiya, B.D., Gendelman, H.E., Byrareddy, S.N., 2020. SARS-CoV-2 infection leads to neurological dysfunction. J. Neuroimmune Pharmacol. 15, 167-173.

  • Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J.R., Hilgenfeld, R., 2003. Coronavirus main proteinase (3CLpro) structure:basis for design of anti-SARS drugs. Science 300, 1763-1767.

  • Arabi, Y.M., Harthi, A., Hussein, J., Bouchama, A., Johani, S., Hajeer, A.H., Saeed, B.T., Wahbi, A., Saedy, A., Aldabbagh, T., Okaili, R., Sadat, M., Balkhy, H., 2015. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus(MERS-CoV). Infection 43, 495-501.

  • Arya, R., Kumari, S., Pandey, B., Mistry, H., Bihani, S.C., Das, A., Prashar, V., Gupta, G.D., Panicker, L., Kumar, M., 2021. Structural insights into SARS-CoV-2 proteins. J. Mol.Biol. 433, 166725.

  • Chafekar, A., Fielding, B.C., 2018. MERS-CoV:understanding the latest human coronavirus threat. Viruses 10, 93.

  • Chen, B., Tian, E.K., He, B., Tian, L., Han, R., Wang, S., Xiang, Q., Zhang, S., El Arnaout, T., Cheng, W., 2020. Overview of lethal human coronaviruses. Signal Transduct. Targeted Ther. 5, 89.

  • Chen, S., Tian, J., Li, Z., Kang, H., Zhang, J., Huang, J., Yin, H., Hu, X., Qu, L., 2019. Feline infectious peritonitis virus Nsp5 inhibits type I interferon production by cleaving NEMO at multiple sites. Viruses 12, 43.

  • Chuck, C.P., Chong, L.T., Chen, C., Chow, H.F., Wan, D.C.C., Wong, K.B., 2010. Profiling of substrate specificity of SARS-CoV 3CL. PLoS One 5, e13197.

  • Chuck, C.P., Chow, H.F., Wan, D.C.C., Wong, K.B., 2011. Profiling of substrate specificities of 3C-like proteases from group 1, 2a, 2b, and 3 coronaviruses. PLoS One 6, e27228.

  • Cohen, M.E., Eichel, R., Steiner-Birmanns, B., Janah, A., Ioshpa, M., Bar-Shalom, R., Paul, J.J., Gaber, H., Skrahina, V., Bornstein, N.M., Yahalom, G., 2020. A case of probable Parkinson's disease after SARS-CoV-2 infection. Lancet Neurol. 19, 804-805.

  • Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E., 2004. WebLogo:a sequence logo generator. Genome Res. 14, 1188-1190.

  • Cui, J., Li, F., Shi, Z.L., 2019. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181-192.

  • Dewanjee, S., Vallamkondu, J., Kalra, R.S., Puvvada, N., Kandimalla, R., Reddy, P.H., 2021. Emerging COVID-19 neurological manifestations:present outlook and potential neurological challenges in COVID-19 pandemic. Mol. Neurobiol. 58, 4694-4715.

  • El Boujnouni, H., Rahouti, M., El Boujnouni, M., 2021. Identification of SARS-CoV-2 origin:using Ngrams, principal component analysis and Random Forest algorithm. Inform. Med. Unlocked 24, 100577.

  • Fang, S., Shen, H., Wang, J., Tay, F.P.L., Liu, D.X., 2010. Functional and genetic studies of the substrate specificity of coronavirus infectious bronchitis virus 3C-like proteinase. J. Virol. 84, 7325-7336.

  • Fearon, C., Fasano, A., 2021. Parkinson's disease and the COVID-19 pandemic. J. Parkinsons Dis. 11, 431-444.

  • Fu, L., Ye, F., Feng, Y., Yu, F., Wang, Q., Wu, Y., Zhao, C., Sun, H., Huang, B., Niu, P., Song, H., Shi, Y., Li, X., Tan, W., Qi, J., Gao, G.F., 2020. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat. Commun. 11, 4417.

  • Gralinski, L.E., Bankhead, A., Jeng, S., Menachery, V.D., Proll, S., Belisle, S.E., Matzke, M., Webb-Robertson, B.J.M., Luna, M.L., Shukla, A.K., Ferris, M.T., Bolles, M., Chang, J., Aicher, L., Waters, K.M., Smith, R.D., Metz, T.O., Law, G.L., Katze, M.G., Mcweeney, S., Baric, R.S., 2013. Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. mBio 4, e00271, 13.

  • Grau, J., Grosse, I., Keilwagen, J., 2015. PRROC:computing and visualizing precisionrecall and receiver operating characteristic curves in R. Bioinformatics 31, 2595-2597.

  • Gupta, P., Mohanty, D., 2021. SMMPPI:a machine learning-based approach for prediction of modulators of protein-protein interactions and its application for identification of novel inhibitors for RBD:hACE2 interactions in SARS-CoV-2. Briefings Bioinf. 22 bbab111.

  • Hartenian, E., Nandakumar, D., Lari, A., Ly, M., Tucker, J.M., Glaunsinger, B.A., 2020. The molecular virology of coronaviruses. J. Biol. Chem. 295, 12910-12934.

  • Hu, B., Guo, H., Zhou, P., Shi, Z.L., 2021. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141-154.

  • Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Mol. Biol. Evol. 30, 772-780.

  • Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., Kanehisa, M., 2008. AAindex:amino acid index database, progress report 2008. Nucleic Acids Res. 36, D202-D205.

  • Kiemer, L., Lund, O., Brunak, S., Blom, N., 2004. Coronavirus 3CLpro proteinase cleavage sites:possible relevance to SARS virus pathology. BMC Bioinf. 5, 72.

  • Kim, J.E., Heo, J.H., Kim, H.O., Song, S.H., Park, S.S., Park, T.H., Ahn, J.Y., Kim, M.K., Choi, J.P., 2017. Neurological complications during treatment of Middle East respiratory syndrome. J. Clin. Neurol. 13, 227-233.

  • Klemm, T., Ebert, G., Calleja, D.J., Allison, C.C., Richardson, L.W., Bernardini, J.P., Lu, B.G., Kuchel, N.W., Grohmann, C., Shibata, Y., Gan, Z.Y., Cooney, J.P., Doerflinger, M., Au, A.E., Blackmore, T.R., Van Der Heden Van Noort, G.J., Geurink, P.P., Ovaa, H., Newman, J., Riboldi-Tunnicliffe, A., Czabotar, P.E., Mitchell, J.P., Feltham, R., Lechtenberg, B.C., Lowes, K.N., Dewson, G., Pellegrini, M., Lessene, G., Komander, D., 2020. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. 39, e106275.

  • Kounakis, K., Tavernarakis, N., 2019. The cytoskeleton as a modulator of aging and neurodegeneration. Adv. Exp. Med. Biol. 1178, 227-245.

  • Larsen, C.N., Sun, G., Li, X., Zaremba, S., Zhao, H., He, S., Zhou, L., Kumar, S., Desborough, V., Klem, E.B., 2020. Mat_peptide:comprehensive annotation of mature peptides from polyproteins in five virus families. Bioinformatics 36, 1627-1628.

  • Lau, K.K., Yu, W.-C., Chu, C.M., Lau, S.T., Sheng, B., Yuen, K.Y., 2004. Possible central nervous system infection by SARS coronavirus. Emerg. Infect. Dis. 10, 342-344.

  • Lu, C., Zhang, Z., Cai, Z., Zhu, Z., Qiu, Y., Wu, A., Jiang, T., Zheng, H., Peng, Y., 2021. Prokaryotic virus host predictor:a Gaussian model for host prediction of prokaryotic viruses in metagenomics. BMC Biol. 19, 5.

  • Moustaqil, M., Ollivier, E., Chiu, H.P., Van Tol, S., Rudolffi-Soto, P., Stevens, C., Bhumkar, A., Hunter, D.J.B., Freiberg, A.N., Jacques, D., Lee, B., Sierecki, E., Gambin, Y., 2021. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1):implications for disease presentation across species. Emerg. Microb. Infect. 10, 178-195.

  • Oberstadt, M., Claßen, J., Arendt, T., Holzer, M., 2018. TDP-43 and cytoskeletal proteins in ALS. Mol. Neurobiol. 55, 3143-3151.

  • Pablos, I., Machado, Y., De Jesus, H.C.R., Mohamud, Y., Kappelhoff, R., Lindskog, C., Vlok, M., Bell, P.A., Butler, G.S., Grin, P.M., Cao, Q.T., Nguyen, J.P., Solis, N., Abbina, S., Rut, W., Vederas, J.C., Szekely, L., Szakos, A., Drag, M., Kizhakkedathu, J.N., Mossman, K., Hirota, J.A., Jan, E., Luo, H., Banerjee, A., Overall, C.M., 2021. Mechanistic insights into COVID-19 by global analysis of the SARS-CoV-2 3CL substrate degradome. Cell Rep. 37, 109892.

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É., 2011. Scikit-learn:machine learning in Python. J. Mach. Learn. Res. 12, 2825-2830.

  • Qiang, X.L., Xu, P., Fang, G., Liu, W.B., Kou, Z., 2020. Using the spike protein feature to predict infection risk and monitor the evolutionary dynamic of coronavirus. Infect Dis Poverty 9, 33.

  • Rosado, J., Pelleau, S., Cockram, C., Merkling, S.H., Nekkab, N., Demeret, C., Meola, A., Kerneis, S., Terrier, B., Fafi-Kremer, S., De Seze, J., Bruel, T., Dejardin, F., Petres, S., Longley, R., Fontanet, A., Backovic, M., Mueller, I., White, M.T., 2021. Multiplex assays for the identification of serological signatures of SARS-CoV-2 infection:an antibody-based diagnostic and machine learning study. Lancet Microbe 2, e60-e69.

  • Schechter, I., Berger, A., 1967. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27, 157-162.

  • Shang, J., Han, N., Chen, Z., Peng, Y., Li, L., Zhou, H., Ji, C., Meng, J., Jiang, T., Wu, A., 2021. Compositional diversity and evolutionary pattern of coronavirus accessory proteins. Briefings Bioinf. 22, 1267-1278.

  • Singh, O., Su, E.C.Y., 2016. Prediction of HIV-1 protease cleavage site using a combination of sequence, structural, and physicochemical features. BMC Bioinf. 17, 478.

  • Snijder, E.J., Decroly, E., Ziebuhr, J., 2016. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv. Virus Res. 96, 59-126.

  • Stanley, J.T., Gilchrist, A.R., Stabell, A.C., Allen, M.A., Sawyer, S.L., Dowell, R.D., 2020. Two-stage ML classifier for identifying host protein targets of the dengue protease. Pac Symp Biocomput 25, 487-498.

  • Taquet, M., Geddes, J.R., Husain, M., Luciano, S., Harrison, P.J., 2021. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19:a retrospective cohort study using electronic health records. Lancet Psychiatr. 8, 416-427.

  • Tsai, L.K., Hsieh, S.T., Chao, C.C., Chen, Y.C., Lin, Y.H., Chang, S.C., Chang, Y.C., 2004. Neuromuscular disorders in severe acute respiratory syndrome. Arch. Neurol. 61, 1669-1673.

  • Vuong, W., Khan, M.B., Fischer, C., Arutyunova, E., Lamer, T., Shields, J., Saffran, H.A., Mckay, R.T., Van Belkum, M.J., Joyce, M.A., Young, H.S., Tyrrell, D.L., Vederas, J.C., Lemieux, M.J., 2020. Feline coronavirus drug inhibits the main protease of SARSCoV-2 and blocks virus replication. Nat. Commun. 11, 4282.

  • Wang, D., Fang, L., Shi, Y., Zhang, H., Gao, L., Peng, G., Chen, H., Li, K., Xiao, S., 2016. Porcine epidemic diarrhea virus 3C-like protease regulates its interferon antagonism by cleaving NEMO. J. Virol. 90, 2090-2101.

  • WHO, 2022. WHO coronavirus (COVID-19) overview. https://covid19.who.int/.(Accessed 25 March 2022).

  • Xu, J., Zhong, S., Liu, J., Li, L., Li, Y., Wu, X., Li, Z., Deng, P., Zhang, J., Zhong, N., Ding, Y., Jiang, Y., 2005. Detection of severe acute respiratory syndrome coronavirus in the brain:potential role of the chemokine mig in pathogenesis. Clin. Infect. Dis. 41, 1089-1096.

  • Yu, G., Wang, L.G., Han, Y., He, Q.Y., 2012. clusterProfiler:an R package for comparing biological themes among gene clusters. OMICS 16, 284-287.

  • Zhu, X., Chen, J., Tian, L., Zhou, Y., Xu, S., Long, S., Wang, D., Fang, L., Xiao, S., 2020. Porcine deltacoronavirus nsp5 cleaves DCP1A to decrease its antiviral activity. J. Virol. 94, e02162, 19.

  • Zhu, X., Fang, L., Wang, D., Yang, Y., Chen, J., Ye, X., Foda, M.F., Xiao, S., 2017a. Porcine deltacoronavirus nsp5 inhibits interferon-β production through the cleavage of NEMO. Virology 502, 33-38.

  • Zhu, X., Wang, D., Zhou, J., Pan, T., Chen, J., Yang, Y., Lv, M., Ye, X., Peng, G., Fang, L., Xiao, S., 2017b. Porcine deltacoronavirus nsp5 antagonizes type I interferon signaling by cleaving STAT2. J. Virol. 91, e00003-17.