• Alejo, A., Matamoros, T., Guerra, M. and Andres, G., 2018. A Proteomic Atlas of the African Swine Fever Virus Particle. J Virol 92, e00119-20.

  • Anand, S.K., Sharma, A., Singh, N. and Kakkar, P., 2020. Entrenching role of cell cycle checkpoints and autophagy for maintenance of genomic integrity. DNA Repair (Amst) 86, 102748.

  • Aukrust, P., Luna, L., Ueland, T., Johansen, R.F., Muller, F., Froland, S.S., Seeberg, E.C. and Bjoras, M., 2005. Impaired base excision repair and accumulation of oxidative base lesions in CD4+ T cells of HIV-infected patients. Blood 105, 4730-5.

  • Ba, X., Bacsi, A., Luo, J., Aguilera-Aguirre, L., Zeng, X., Radak, Z., Brasier, A.R. and Boldogh, I., 2014. 8-oxoguanine DNA glycosylase-1 augments proinflammatory gene expression by facilitating the recruitment of site-specific transcription factors. J Immunol 192, 2384-94.

  • Baquero, J.M., Benitez-Buelga, C., Rajagopal, V., Zhenjun, Z., Torres-Ruiz, R., Muller, S., Hanna, B., Loseva, O., Wallner, O., Michel, M., Rodriguez-Perales, S., Gad, H., Visnes, T., Helleday, T., Benitez, J. and Osorio, A., 2021. Small molecule inhibitor of OGG1 blocks oxidative DNA damage repair at telomeres and potentiates methotrexate anticancer effects. Sci Rep 11, 3490.

  • Bennett, G.R., Peters, R., Wang, X.H., Hanne, J., Sobol, R.W., Bundschuh, R., Fishel, R. and Yoder, K.E., 2014. Repair of oxidative DNA base damage in the host genome influences the HIV integration site sequence preference. PLoS One 9, e103164.

  • Cackett, G., Matelska, D., Sykora, M., Portugal, R., Malecki, M., Bahler, J., Dixon, L. and Werner, F., 2020. The African Swine Fever Virus Transcriptome. J Virol 94, e00119-20.

  • Cardoso, T.C., Rosa, A.C., Ferreira, H.L., Okamura, L.H., Oliveira, B.R., Vieira, F.V., Silva-Frade, C., Gameiro, R. and Flores, E.F., 2016. Bovine herpesviruses induce different cell death forms in neuronal and glial-derived tumor cell cultures. J Neurovirol 22, 725-735.

  • Chen, Y., Chen, X., Huang, Q., Shao, Z., Gao, Y., Li, Y., Yang, C., Liu, H., Li, J., Wang, Q., Ma, J., Zhang, Y.Z., Gu, Y. and Gan, J., 2020. A unique DNA-binding mode of African swine fever virus AP endonuclease. Cell Discov 6, 13.

  • Cuesta-Geijo, M.A., Garcia-Dorival, I., Del, P.A., Urquiza, J., Galindo, I., Barrado-Gil, L., Lasala, F., Cayuela, A., Sorzano, C., Gil, C., Delgado, R. and Alonso, C., 2022. New insights into the role of endosomal proteins for African swine fever virus infection. PLoS Pathog 18, e1009784.

  • D'Augustin, O., Huet, S., Campalans, A. and Radicella, J.P., 2020. Lost in the Crowd:How Does Human 8-Oxoguanine DNA Glycosylase 1 (OGG1) Find 8-Oxoguanine in the Genome? Int J Mol Sci 21, 8360.

  • Dixon, L.K., Chapman, D.A., Netherton, C.L. and Upton, C., 2013. African swine fever virus replication and genomics. Virus Res 173, 3-14.

  • Dryden, M., 2018. Reactive oxygen species:a novel antimicrobial. Int J Antimicrob Agents 51, 299-303.

  • Dryden, M.S., Cooke, J., Salib, R.J., Holding, R.E., Biggs, T., Salamat, A.A., Allan, R.N., Newby, R.S., Halstead, F., Oppenheim, B., Hall, T., Cox, S.C., Grover, L.M., Al-Hindi, Z., Novak-Frazer, L. and Richardson, M.D., 2017. Reactive oxygen:A novel antimicrobial mechanism for targeting biofilm-associated infection. J Glob Antimicrob Resist 8, 186-191.

  • El-Amine, R., Germini, D., Zakharova, V.V., Tsfasman, T., Sheval, E.V., Louzada, R., Dupuy, C., Bilhou-Nabera, C., Hamade, A., Najjar, F., Oksenhendler, E., Lipinski, M., Chernyak, B.V. and Vassetzky, Y.S., 2018. HIV-1 Tat protein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production. Redox Biol 15, 97-108.

  • Gaudreault, N.N., Madden, D.W., Wilson, W.C., Trujillo, J.D. and Richt, J.A., 2020. African Swine Fever Virus:An Emerging DNA Arbovirus. Front Vet Sci 7, 215.

  • Hanna, B., Helleday, T. and Mortusewicz, O., 2020. OGG1 Inhibitor TH5487 Alters OGG1 Chromatin Dynamics and Prevents Incisions. Biomolecules 10, 1483.

  • Hanna, B., Michel, M., Helleday, T. and Mortusewicz, O., 2021. NEIL1 and NEIL2 Are Recruited as Potential Backup for OGG1 upon OGG1 Depletion or Inhibition by TH5487. Int J Mol Sci 22, 4542.

  • Hu, S., Sheng, W.S., Schachtele, S.J. and Lokensgard, J.R., 2011. Reactive oxygen species drive herpes simplex virus (HSV)-1-induced proinflammatory cytokine production by murine microglia. J Neuroinflammation 8, 123.

  • Iyer, L.M., Aravind, L. and Koonin, E.V., 2001. Common origin of four diverse families of large eukaryotic DNA viruses. J Virol 75, 11720-34.

  • Jezewska, M.J., Marcinowicz, A., Lucius, A.L. and Bujalowski, W., 2006. DNA polymerase X from African swine fever virus:quantitative analysis of the enzyme-ssDNA interactions and the functional structure of the complex. J Mol Biol 356, 121-41.

  • Kant, M., Tahara, Y.K., Jaruga, P., Coskun, E., Lloyd, R.S., Kool, E.T. and Dizdaroglu, M., 2021. Inhibition by Tetrahydroquinoline Sulfonamide Derivatives of the Activity of Human 8-Oxoguanine DNA Glycosylase (OGG1) for Several Products of Oxidatively induced DNA Base Lesions. ACS Chem Biol 16, 45-51.

  • Kim, S.J., Cheresh, P., Williams, D., Cheng, Y., Ridge, K., Schumacker, P.T., Weitzman, S., Bohr, V.A. and Kamp, D.W., 2014. Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells. J Biol Chem 289, 6165-76.

  • Kolodner, R.D., Putnam, C.D. and Myung, K., 2002. Maintenance of genome stability in Saccharomyces cerevisiae. Science 297, 552-7.

  • Lamarche, B.J., Showalter, A.K. and Tsai, M.D., 2005. An error-prone viral DNA ligase. Biochemistry 44, 8408-17.

  • MALMQUIST, W.A. and HAY, D., 1960. Hemadsorption and cytopathic effect produced by African Swine Fever virus in swine bone marrow and buffy coat cultures. Am J Vet Res 21, 104-8.

  • Nakabeppu, Y., Tsuchimoto, D., Ichinoe, A., Ohno, M., Ide, Y., Hirano, S., Yoshimura, D., Tominaga, Y., Furuichi, M. and Sakumi, K., 2004. Biological significance of the defense mechanisms against oxidative damage in nucleic acids caused by reactive oxygen species:from mitochondria to nuclei. Ann N Y Acad Sci 1011, 101-11.

  • Novoa, R.R., Calderita, G., Arranz, R., Fontana, J., Granzow, H. and Risco, C., 2005. Virus factories:associations of cell organelles for viral replication and morphogenesis. Biol Cell 97, 147-72.

  • Owen, J.B. and Butterfield, D.A., 2010. Measurement of oxidized/reduced glutathione ratio. Methods Mol Biol 648, 269-77.

  • Paiva, C.N. and Bozza, M.T., 2014. Are reactive oxygen species always detrimental to pathogens? Antioxid Redox Signal 20, 1000-37.

  • Pan, L., Hao, W., Zheng, X., Zeng, X., Ahmed, A.A., Boldogh, I. and Ba, X., 2017. OGG1-DNA interactions facilitate NF-kappaB binding to DNA targets. Sci Rep 7, 43297.

  • Pan, L., Zhu, B., Hao, W., Zeng, X., Vlahopoulos, S.A., Hazra, T.K., Hegde, M.L., Radak, Z., Bacsi, A., Brasier, A.R., Ba, X. and Boldogh, I., 2016. Oxidized Guanine Base Lesions Function in 8-Oxoguanine DNA Glycosylase-1-mediated Epigenetic Regulation of Nuclear Factor kappaB-driven Gene Expression. J Biol Chem 291, 25553-25566.

  • Pao, P.C., Patnaik, D., Watson, L.A., Gao, F., Pan, L., Wang, J., Adaikkan, C., Penney, J., Cam, H.P., Huang, W.C., Pantano, L., Lee, A., Nott, A., Phan, T.X., Gjoneska, E., Elmsaouri, S., Haggarty, S.J. and Tsai, L.H., 2020. HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer's disease. Nat Commun 11, 2484.

  • Piciocchi, M., Cardin, R., Cillo, U., Vitale, A., Cappon, A., Mescoli, C., Guido, M., Rugge, M., Burra, P., Floreani, A. and Farinati, F., 2016. Differential timing of oxidative DNA damage and telomere shortening in hepatitis C and B virus-related liver carcinogenesis. Transl Res 168, 122-133.

  • Puddu, F., Herzog, M., Selivanova, A., Wang, S., Zhu, J., Klein-Lavi, S., Gordon, M., Meirman, R., Millan-Zambrano, G., Ayestaran, I., Salguero, I., Sharan, R., Li, R., Kupiec, M. and Jackson, S.P., 2019. Genome architecture and stability in the Saccharomyces cerevisiae knockout collection. Nature 573, 416-420.

  • Qin, S., Lin, P., Wu, Q., Pu, Q., Zhou, C., Wang, B., Gao, P., Wang, Z., Gao, A., Overby, M., Yang, J., Jiang, J., Wilson, D.L., Tahara, Y.K., Kool, E.T., Xia, Z. and Wu, M., 2020. Small-Molecule Inhibitor of 8-Oxoguanine DNA Glycosylase 1 Regulates Inflammatory Responses during Pseudomonas aeruginosa Infection. J Immunol 205, 2231-2242.

  • Rathakrishnan, A., Connell, S., Petrovan, V., Moffat, K., Goatley, L.C., Jabbar, T., Sanchez-Cordon, P.J., Reis, A.L. and Dixon, L.K., 2022. Differential Effect of Deleting Members of African Swine Fever Virus Multigene Families 360 and 505 from the Genotype II Georgia 2007/1 Isolate on Virus Replication, Virulence, and Induction of Protection. J Virol 96, e0189921.

  • Reis, A.L., Abrams, C.C., Goatley, L.C., Netherton, C., Chapman, D.G., Sanchez-Cordon, P. and Dixon, L.K., 2016. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine 34, 4698-4705.

  • Redrejo-Rodriguez, M. and Salas, M.L., 2014. Repair of base damage and genome maintenance in the nucleo-cytoplasmic large DNA viruses. Virus Res 179, 12-25.

  • Ruiz-Gonzalvo, F., Rodriguez, F. and Escribano, J.M., 1996. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology 218, 285-9.

  • Sun, H., Niu, Q., Yang, J., Zhao, Y., Tian, Z., Fan, J., Zhang, Z., Wang, Y., Geng, S., Zhang, Y., Guan, G., Williams, D., Luo, J., Yin, H., Liu, Z., 2021. Transcriptome Profiling Reveals Features of Immune Response and Metabolism of Acutely Infected, Dead and Asymptomatic Infection of African Swine Fever Virus in Pigs. Front Immunol 12,808545.

  • Sampath, H. and Lloyd, R.S., 2019. Roles of OGG1 in transcriptional regulation and maintenance of metabolic homeostasis. DNA Repair (Amst) 81, 102667.

  • Schachtele, S.J., Hu, S., Little, M.R. and Lokensgard, J.R., 2010. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2. J Neuroinflammation 7, 35.

  • Shibutani, S., Takeshita, M. and Grollman, A.P., 1991. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349, 431-4.

  • Simoes, M., Martins, C. and Ferreira, F., 2013. Host DNA damage response facilitates African swine fever virus infection. Vet Microbiol 165, 140-7.

  • Tahara, Y.K., Auld, D., Ji, D., Beharry, A.A., Kietrys, A.M., Wilson, D.L., Jimenez, M., King, D., Nguyen, Z. and Kool, E.T., 2018. Potent and Selective Inhibitors of 8-Oxoguanine DNA Glycosylase. J Am Chem Soc 140, 2105-2114.

  • Verhalen, B., Justice, J.L., Imperiale, M.J. and Jiang, M., 2015. Viral DNA replication-dependent DNA damage response activation during BK polyomavirus infection. J Virol 89, 5032-9.

  • Visnes, T., Benitez-Buelga, C., Cazares-Korner, A., Sanjiv, K., Hanna, B., Mortusewicz, O., Rajagopal, V., Albers, J.J., Hagey, D.W., Bekkhus, T., Eshtad, S., Baquero, J.M., Masuyer, G., Wallner, O., Muller, S., Pham, T., Gokturk, C., Rasti, A., Suman, S., Torres-Ruiz, R., Sarno, A., Wiita, E., Homan, E.J., Karsten, S., Marimuthu, K., Michel, M., Koolmeister, T., Scobie, M., Loseva, O., Almlof, I., Unterlass, J.E., Pettke, A., Bostrom, J., Pandey, M., Gad, H., Herr, P., Jemth, A.S., El, A.S., Kalderen, C., Rodriguez-Perales, S., Benitez, J., Krokan, H.E., Altun, M., Stenmark, P., Berglund, U.W. and Helleday, T., 2020. Targeting OGG1 arrests cancer cell proliferation by inducing replication stress. Nucleic Acids Res 48, 12234-12251.

  • Visnes, T., Cazares-Korner, A., Hao, W., Wallner, O., Masuyer, G., Loseva, O., Mortusewicz, O., Wiita, E., Sarno, A., Manoilov, A., Astorga-Wells, J., Jemth, A.S., Pan, L., Sanjiv, K., Karsten, S., Gokturk, C., Grube, M., Homan, E.J., Hanna, B., Paulin, C., Pham, T., Rasti, A., Berglund, U.W., von Nicolai, C., Benitez-Buelga, C., Koolmeister, T., Ivanic, D., Iliev, P., Scobie, M., Krokan, H.E., Baranczewski, P., Artursson, P., Altun, M., Jensen, A.J., Kalderen, C., Ba, X., Zubarev, R.A., Stenmark, P., Boldogh, I. and Helleday, T., 2018. Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation. Science 362, 834-839.

  • Wang, J., Nagy, N. and Masucci, M.G., 2020. The Epstein-Barr virus nuclear antigen-1 upregulates the cellular antioxidant defense to enable B-cell growth transformation and immortalization. Oncogene 39, 603-616.

  • Wang, K., Maayah, M., Sweasy, J.B. and Alnajjar, K.S., 2021. The role of cysteines in the structure and function of OGG1. J Biol Chem 296, 100093.

  • Wang, R., Hao, W., Pan, L., Boldogh, I. and Ba, X., 2018. The roles of base excision repair enzyme OGG1 in gene expression. Cell Mol Life Sci 75, 3741-3750.

  • Wang, W., Ma, Y., Huang, M., Liang, W., Zhao, X., Li, Q., Wang, S., Hu, Z., He, L., Gao, T., Chen, J., Pan, F. and Guo, Z., 2021. Asymmetrical arginine dimethylation of histone H4 by 8-oxog/OGG1/PRMT1 is essential for oxidative stress-induced transcription activation. Free Radic Biol Med 164, 175-186.

  • Wang, Y., Cui, S., Xin, T., Wang, X., Yu, H., Chen, S., Jiang, Y., Gao, X., Jiang, Y., Guo, X., Jia, H. and Zhu, H., 2021. African Swine Fever Virus MGF360-14L Negatively Regulates Type I Interferon Signaling by Targeting IRF3. Front Cell Infect Microbiol 11, 818969.

  • Weitzman, M.D. and Fradet-Turcotte, A., 2018. Virus DNA Replication and the Host DNA Damage Response. Annu Rev Virol 5, 141-164.

  • Weitzman, M.D., Lilley, C.E. and Chaurushiya, M.S., 2010. Genomes in conflict:maintaining genome integrity during virus infection. Annu Rev Microbiol 64, 61-81.

  • Xia, L., Huang, W., Bellani, M., Seidman, M.M., Wu, K., Fan, D., Nie, Y., Cai, Y., Zhang, Y.W., Yu, L.R., Li, H., Zahnow, C.A., Xie, W., Chiu, Y.R., Rassool, F.V. and Baylin, S.B., 2017. CHD4 Has Oncogenic Functions in Initiating and Maintaining Epigenetic Suppression of Multiple Tumor Suppressor Genes. Cancer Cell 31, 653-668.e7.

  • Xian, Y. and Xiao, C., 2020. The Structure of ASFV Advances the Fight against the Disease. Trends Biochem Sci 45, 276-278.

  • Zhang, L., Misiara, L., Samaranayake, G.J., Sharma, N., Nguyen, D.M., Tahara, Y.K., Kool, E.T. and Rai, P., 2021. OGG1 co-inhibition antagonizes the tumor-inhibitory effects of targeting MTH1. Redox Biol 40, 101848.

  • Zhou, X., Li, N., Luo, Y., Liu, Y., Miao, F., Chen, T., Zhang, S., Cao, P., Li, X., Tian, K., Qiu, H.J. and Hu, R., 2018. Emergence of African Swine Fever in China, 2018. Transbound Emerg Dis 65, 1482-1484.