• Adiliaghdam, F., Basavappa, M., Saunders, T.L., Harjanto, D., Prior, J.T., Cronkite, D.A., Papavasiliou, N., Jeffrey, K.L., 2020. A requirement for Argonaute 4 in mammalian antiviral defense. Cell Rep. 30, 1690–1701 e1694.

  • Backes, S., Langlois, R.A., Schmid, S., Varble, A., Shim, J.V., Sachs, D., tenOever, B.R., 2014. The Mammalian response to virus infection is independent of small RNA silencing. Cell Rep. 8, 114–125.

  • Bronevetsky, Y., Villarino, A.V., Eisley, C.J., Barbeau, R., Barczak, A.J., Heinz, G.A., Kremmer, E., Heissmeyer, V., McManus, M.T., Erle, D.J., Rao, A., Ansel, K.M., 2013.T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. J. Exp. Med. 210, 417–432.

  • Chang, H.M., Martinez, N.J., Thornton, J.E., Hagan, J.P., Nguyen, K.D., Gregory, R.I., 2012. Trim71 cooperates with microRNAs to repress Cdkn1a expression and promote embryonic stem cell proliferation. Nat. Commun. 3, 923.

  • Chen, J., Lai, F., Niswander, L., 2012. The ubiquitin ligase mLin41 temporally promotes neural progenitor cell maintenance through FGF signaling. Genes Dev. 26, 803–815.

  • Demeter, T., Vaskovicova, M., Malik, R., Horvat, F., Pasulka, J., Svobodova, E., Flemr, M., Svoboda, P., 2019. Main constraints for RNAi induced by expressed long dsRNA in mouse cells. Life Sci Alliance 2, e201800289.

  • Fang, Y., Liu, Z., Qiu, Y., Kong, J., Fu, Y., Liu, Y., Wang, C., Quan, J., Wang, Q., Xu, W., Yin, L., Cui, J., Xu, Y., Curry, S., Jiang, S., Lu, L., Zhou, X., 2021. Inhibition of viral suppressor of RNAi proteins by designer peptides protects from enteroviral infection in vivo. Immunity 54, 2231–2244 e2236.

  • Flemr, M., Malik, R., Franke, V., Nejepinska, J., Sedlacek, R., Vlahovicek, K., Svoboda, P., 2013. A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell 155, 807–816.

  • Gebert, L.F.R., MacRae, I.J., 2019. Regulation of microRNA function in animals. Nat. Rev.Mol. Cell Biol. 20, 21–37.

  • Guo, Z., Li, Y., Ding, S.W., 2019. Small RNA-based antimicrobial immunity. Nat. Rev.Immunol. 19, 31–44.

  • Han, J., LaVigne, C.A., Jones, B.T., Zhang, H., Gillett, F., Mendell, J.T., 2020a. A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science 370, eabc9546.

  • Han, Q., Chen, G., Wang, J., Jee, D., Li, W.X., Lai, E.C., Ding, S.W., 2020b. Mechanism and function of antiviral RNA interference in mice. mBio 11, e03278-19.

  • Kennedy, E.M., Whisnant, A.W., Kornepati, A.V., Marshall, J.B., Bogerd, H.P., Cullen, B.R., 2015. Production of functional small interfering RNAs by an aminoterminal deletion mutant of human Dicer. Proc. Natl. Acad. Sci. U. S. A. 112, E6945–E6954.

  • Lai, H.H., Lin, L.J., Hung, L.Y., Chen, P.S., 2018. Role of Dicer in regulating oxaliplatin resistance of colon cancer cells. Biochem. Biophys. Res. Commun. 506, 87–93.

  • Li, Y., Basavappa, M., Lu, J., Dong, S., Cronkite, D.A., Prior, J.T., Reinecker, H.C., Hertzog, P., Han, Y., Li, W.X., Cheloufi, S., Karginov, F.V., Ding, S.W., Jeffrey, K.L., 2016. Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells. Nat Microbiol 2, 16250.

  • Li, Y., Lu, J., Han, Y., Fan, X., Ding, S.W., 2013. RNA interference functions as an antiviral immunity mechanism in mammals. Science 342, 231–234.

  • Liu, Q., Chen, X., Novak, M.K., Zhang, S., Hu, W., 2021. Repressing Ago2 mRNA translation by Trim71 maintains pluripotency through inhibiting let-7 microRNAs.Elife 10, e66288.

  • Maillard, P.V., Ciaudo, C., Marchais, A., Li, Y., Jay, F., Ding, S.W., Voinnet, O., 2013.Antiviral RNA interference in mammalian cells. Science 342, 235–238.

  • Maillard, P.V., Van der Veen, A.G., Deddouche-Grass, S., Rogers, N.C., Merits, A., Reis E Sousa, C., 2016. Inactivation of the type I interferon pathway reveals long doublestranded RNA-mediated RNA interference in mammalian cells. EMBO J. 35, 2505–2518.

  • Poirier, E.Z., Buck, M.D., Chakravarty, P., Carvalho, J., Frederico, B., Cardoso, A., Healy, L., Ulferts, R., Beale, R., Reis, E.S.C., 2021. An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science 373, 231–236.

  • Qian, Q., Zhou, H., Shu, T., Mu, J., Fang, Y., Xu, J., Li, T., Kong, J., Qiu, Y., Zhou, X., 2020.The capsid protein of semliki forest virus antagonizes RNA interference in mammalian cells. J. Virol. 94, e01233-19.

  • Qiu, Y., Xu, Y., Zhang, Y., Zhou, H., Deng, Y.Q., Li, X.F., Miao, M., Zhang, Q., Zhong, B., Hu, Y., Zhang, F.C., Wu, L., Qin, C.F., Zhou, X., 2017. Human virus-derived small RNAs can confer antiviral immunity in mammals. Immunity 46, 992–1004 e1005.

  • Qiu, Y., Xu, Y.P., Wang, M., Miao, M., Zhou, H., Xu, J., Kong, J., Zheng, D., Li, R.T., Zhang, R.R., Guo, Y., Li, X.F., Cui, J., Qin, C.F., Zhou, X., 2020. Flavivirus induces and antagonizes antiviral RNA interference in both mammals and mosquitoes. Sci. Adv. 6, eaax7989.

  • Rybak, A., Fuchs, H., Hadian, K., Smirnova, L., Wulczyn, E.A., Michel, G., Nitsch, R., Krappmann, D., Wulczyn, F.G., 2009. The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat. Cell Biol. 11, 1411–1420.

  • Sanchez-David, R.Y., Maillard, P.V., 2021. Unlocking the therapeutic potential of antiviral RNAi. Immunity 54, 2180–2182.

  • Shahrudin, S., Ding, S.W., 2021. Boosting stem cell immunity to viruses. Science 373, 160–161.

  • Shi, C.Y., Kingston, E.R., Kleaveland, B., Lin, D.H., Stubna, M.W., Bartel, D.P., 2020. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science 370, eabc9359.

  • Smibert, P., Yang, J.S., Azzam, G., Liu, J.L., Lai, E.C., 2013. Homeostatic control of Argonaute stability by microRNA availability. Nat. Struct. Mol. Biol. 20, 789–795.

  • Sun, P., Zhang, S., Qin, X., Chang, X., Cui, X., Li, H., Zhang, S., Gao, H., Wang, P., Zhang, Z., Luo, J., Li, Z., 2018. Foot-and-mouth disease virus capsid protein VP2 activates the cellular EIF2S1-ATF4 pathway and induces autophagy via HSPB1.Autophagy 14, 336–346.

  • Ullah, K., Chen, S., Lu, J., Wang, X., Liu, Q., Zhang, Y., Long, Y., Hu, Z., Xu, G., 2020. The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. J. Biol. Chem. 295, 4696–4708.

  • van der Veen, A.G., Maillard, P.V., Schmidt, J.M., Lee, S.A., Deddouche-Grass, S., Borg, A., Kjaer, S., Snijders, A.P., Reis e Sousa, C., 2018. The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells. EMBO J. 37, e97479.

  • Xu, J., Kong, J., Lyu, B., Wang, X., Qian, Q., Zhou, X., Qiu, Y., 2021. The capsid protein of rubella virus antagonizes RNA interference in mammalian cells. Viruses 13, 154.

  • Xu, Y.P., Qiu, Y., Zhang, B., Chen, G., Chen, Q., Wang, M., Mo, F., Xu, J., Wu, J., Zhang, R.R., Cheng, M.L., Zhang, N.N., Lyu, B., Zhu, W.L., Wu, M.H., Ye, Q., Zhang, D., Man, J.H., Li, X.F., Cui, J., Xu, Z., Hu, B., Zhou, X., Qin, C.F., 2019. Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids. Cell Res. 29, 265–273.

  • Yonezawa, T., Takahashi, H., Shikata, S., Liu, X., Tamura, M., Asada, S., Fukushima, T., Fukuyama, T., Tanaka, Y., Sawasaki, T., Kitamura, T., Goyama, S., 2017. The ubiquitin ligase STUB1 regulates stability and activity of RUNX1 and RUNX1-RUNX1T1. J. Biol. Chem. 292, 12528–12541.

  • Zeng, J., Dong, S., Luo, Z., Xie, X., Fu, B., Li, P., Liu, C., Yang, X., Chen, Y., Wang, X., Liu, Z., Wu, J., Yan, Y., Wang, F., Chen, J.F., Zhang, J., Long, G., Goldman, S.A., Li, S., Zhao, Z., Liang, Q., 2020. The Zika virus capsid disrupts corticogenesis by suppressing dicer activity and miRNA biogenesis. Cell Stem Cell 27, 618–632 e619.

  • Zhang, S., Hu, Z.W., Mao, C.Y., Shi, C.H., Xu, Y.M., 2020a. CHIP as a therapeutic target for neurological diseases. Cell Death Dis. 11, 727.

  • Zhang, Y., Li, Z., Ye, Z., Xu, Y., Wang, B., Wang, C., Dai, Y., Lu, J., Lu, B., Zhang, W., Li, Y., 2020b. The activation of antiviral RNA interference not only exists in neural progenitor cells but also in somatic cells in mammals. Emerg. Microb. Infect. 9, 1580–1589.

  • Zhang, Y., Xu, Y., Dai, Y., Li, Z., Wang, J., Ye, Z., Ren, Y., Wang, H., Li, W.X., Lu, J., Ding, S.W., Li, Y., 2021. Efficient Dicer processing of virus-derived double-stranded RNAs and its modulation by RIG-I-like receptor LGP2. PLoS Pathog. 17, e1009790.