-
Alexander DJ, 2000: Newcastle disease and other avian paramyxoviruses[J]. Rev Sci Tech, 19, 443-462. doi: 10.20506/rst.19.2.1231
-
Alexander DJ, 2001: Newcastle disease[J]. Br Poult Sci, 42, 5-22. doi: 10.1080/713655022
-
Bemark M, Boysen P, Lycke NY, 2012: Induction of gut IgA production through T cell-dependent and T cell-independent pathways[J]. Ann N Y Acad Sci, 1247, 97-116. doi: 10.1111/j.1749-6632.2011.06378.x
-
Bessa J, Jegerlehner A, Hinton HJ, Pumpens P, Saudan P, Schneider P, Bachmann MF, 2009: Alveolar macrophages and lung dendritic cells sense RNA and drive mucosal IgA responses[J]. J Immunol, 183, 3788-3799. doi: 10.4049/jimmunol.0804004
-
Curiel T, Landry S, Morris C, Joshi V, Berggren R, Hawkins C, Zou W, Lackner A, Mohamadzadeh M, 2003: 293 Targeting HCV NS3 to dendritic cells (DC) via DC-binding peptides induces potent T cell immunity I in vivo[J]. Hepatology, 38, 297-. doi: 10.1016/S0270-9139(03)80336-1
-
Curiel TJ, Morris C, Brumlik M, Landry SJ, Finstad K, Nelson A, Joshi V, Hawkins C, Alarez X, Lackner A, 2004: Peptides identified through phage display direct immunogenic antigen to dendritic cells[J]. J Immunol, 172, 7425-7431. doi: 10.4049/jimmunol.172.12.7425
-
Diel DG, Da SL, Liu H, Wang Z, Miller PJ, Afonso CL, 2012: Genetic diversity of avian paramyxovirus type, 1: proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes[J]. Infect Genet Evol, 12, 1770-1779. doi: 10.1016/j.meegid.2012.07.012
-
Dimitrov KM, Lee DH, Williamscoplin D, Olivier TL, Miller PJ, Afonso CL, 2016: Newcastle disease viruses causing recent outbreaks worldwide show unexpectedly high genetic similarity to historical virulent isolates from the 1940s[J]. J Clin Microbiol, 54, 1228-1235. doi: 10.1128/JCM.03044-15
-
Dimitrov KM, Afonso CL, Yu Q, Miller PJ, 2017: Newcastle disease vaccines—a solved problem or a continuous challenge?[J]. Vet Microbiol, 206, 126-136. doi: 10.1016/j.vetmic.2016.12.019
-
Dimitrov KM, Abolnik C, Afonso CL, Albina E, Bahl J, Berg M, Briand FX, Brown IH, Choi KS, Chvala I, 2019: Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus[J]. Infect Genet Evol, 74, 103917-. doi: 10.1016/j.meegid.2019.103917
-
Erskine CL, Krco CJ, Hedin KE, Borson ND, Kalli KR, Behrens MD, Heman-Ackah SM, Von HE, Wettstein PJ, Mohamadzadeh M, 2011: MHC class Ⅱ epitope nesting modulates dendritic cell function and improves generation of antigen-specific CD4 helper T cells[J]. J Immunol, 187, 316-324. doi: 10.4049/jimmunol.1100658
-
Hou X, Jiang X, Jiang Y, Tang L, Xu Y, Qiao X, Min L, Wen C, Ma G, Li Y, 2018: Oral immunization against PEDV with recombinant Lactobacillus casei expressing dendritic cell-targeting peptide fusing COE protein of PEDV in piglets[J]. Viruses, 10, 106-. doi: 10.3390/v10030106
-
Hu S, Ma H, Wu Y, Liu W, Wang X, Liu Y, Liu X, 2009: A vaccine candidate of attenuated genotype Ⅶ Newcastle disease virus generated by reverse genetics[J]. Vaccine, 27, 904-910. doi: 10.1016/j.vaccine.2008.11.091
-
Jiang Y, Hu J, Guo Y, Yang W, Ye L, Shi C, Liu Y, Yang G, Wang C, 2015: Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing HN of Newcastle disease virus and DC-targeting peptide fusion protein[J]. J Biotechnol, 216, 82-89. doi: 10.1016/j.jbiotec.2015.09.033
-
Jing Q, Xu X, Ding J, Yin R, Sun Y, Cong X, Wang J, Chan D, Yu S, Liu X, 2017: Newcastle disease virus-like particles induce DC maturation through TLR4/NF-κB pathway and facilitate DC migration by CCR7-CCL19/CCL21 axis[J]. Vet Microbiol, 203, 158-166. doi: 10.1016/j.vetmic.2017.03.002
-
Lee HK, Iwasaki A, 2007: Innate control of adaptive immunity: dendritic cells and beyond[J]. Semin Immunol, 19, 48-55. doi: 10.1016/j.smim.2006.12.001
-
Li X, Ju H, Liu J, Yang D, Qi X, Yang X, Qiu Y, Zheng J, Ge F, Zhou J, 2017: Influenza virus-like particles harboring H9N2 HA and NA proteins induce a protective immune response in chicken[J]. Influenza Other Respir Viruses, 11, 518-524. doi: 10.1111/irv.12472
-
Li Y, Liu M, Sun Q, Zhang H, Zhang H, Jiang S, Liu S, Huang Y, 2019: Genotypic evolution and epidemiological characteristics of H9N2 influenza virus in Shandong Province[J]. Poult Sci, 98, 3488-3495. doi: 10.3382/ps/pez151
-
Liang J, Fu J, Kang H, Lin J, Yu Q, Yang Q, 2013: The stimulatory effect of TLRs ligands on maturation of chicken bone marrow-derived dendritic cells[J]. Vet Immunol Immunopathol, 155, 205-210. doi: 10.1016/j.vetimm.2013.06.014
-
Lindh E, Ek-Kommonen C, Väänänen VM, Vaheri A, Vapalahti O, Huovilainen A, 2014: Molecular epidemiology of H9N2 influenza viruses in Northern Europe[J]. Vet Microbiol, 172, 548-554. doi: 10.1016/j.vetmic.2014.06.020
-
Liu YF, Lai HZ, Li L, Liu YP, Zhang WY, Gao R, Huang WK, Luo QF, Gao Y, Luo Q, Xie XY, Xu JH, Chen RA, 2016: Endemic variation of H9N2 avian influenza virus in China[J]. Avian Dis, 60, 817-825. doi: 10.1637/11452-061616-Reg
-
Liu XF, Wan HQ, Ni XX, Wu YT, Liu WB, 2003: Pathotypical and genotypical characterization of strains of Newcastle disease virus isolated from outbreaks in chicken and goose flocks in some regions of China during 1985-2001[J]. Adv Virol, 148, 1387-1403. doi: 10.1007/s00705-003-0014-z
-
Luginbuhl RE, Jungherr E, 1949: A plate hemagglutination-inhibition test for Newcastle disease antibodies in avian and human serums[J]. Plant Physiol, 92, 276-280. doi: 10.1104/pp.92.1.276
-
Matrosovich MN, Krauss S, Webster RG, 2001: H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity[J]. Virology, 281, 156-162. doi: 10.1006/viro.2000.0799
-
Miller PJ, King DJ, Afonso CL, Suarez DL, 2007: Antigenic differences among Newcastle disease virus strains of different genotypes used in vaccine formulation affect viral shedding after a virulent challenge[J]. Vaccine, 25, 7238-7246. doi: 10.1016/j.vaccine.2007.07.017
-
Miller PJ, Haddas R, Simanov L, Lublin A, Rehmani SF, Wajid A, Bibi T, Khan TA, Yaqub T, Setiyaningsih S, 2015: Identification of new sub-genotypes of virulent Newcastle disease virus with potential panzootic features[J]. Infect Genet Evol, 29, 216-229. doi: 10.1016/j.meegid.2014.10.032
-
Mohamadzadeh M, Duong T, Hoover T, Klaenhammer TR, 2008: Targeting mucosal dendritic cells with microbial antigens from probiotic lactic acid bacteria[J]. Expert Rev Vaccines, 7, 163-174. doi: 10.1586/14760584.7.2.163
-
Mohamadzadeh M, Duong T, Sandwick SJ, Hoover T, Klaenhammer TR, 2009: Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge[J]. Proc Natl Acad Sci USA, 106, 4331-4336. doi: 10.1073/pnas.0900029106
-
Naggar HME, Madkour MS, Hussein HA, 2017: Preparation of mucosal nanoparticles and polymer-based inactivated vaccine for Newcastle disease and H9N2 AI viruses[J]. Vet World, 10, 187-193. doi: 10.14202/vetworld.2017.187-193
-
OIE (2012) Newcastle disease. Manual of diagnostic tests and vaccines for terrestrial animals: mammals, birds and bees. Biological Standards Commission World Organisation for Animal Health, pp 555–574
-
Pu J, Wang S, Yin Y, Zhang G, Carter RA, Wang J, Xu G, Sun H, Wang M, Wen C, 2015: Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus[J]. Proc Natl Acad Sci USA, 112, 548-553. doi: 10.1073/pnas.1422456112
-
Snoeck CJ, Owoade AA, Couacyhymann E, Alkali BR, Okwen MP, Adeyanju AT, Komoyo GF, Nakouné E, Faou AL, Muller CP, 2013: High genetic diversity of Newcastle disease virus in poultry in West and Central Africa: cocirculation of genotype XIV and newly defined genotypes XVII and XVIII[J]. J Clin Microbiol, 51, 2250-2260. doi: 10.1128/JCM.00684-13
-
Susta L, Jones ME, Cattoli G, Cardenas-Garcia S, Miller PJ, Brown CC, Afonso CL, 2014: Pathologic characterization of genotypes XIV and XVII Newcastle disease viruses and efficacy of classical vaccination on specific pathogen-free birds[J]. Vet Pathol, 52, 120-131.
-
Wang X, Wang L, Huang X, Ma S, Yu M, Shi W, Qiao X, Tang L, Xu Y, Li Y, 2017: Oral delivery of probiotics expressing dendritic cell-targeting peptide fused with porcine epidemic diarrhea virus COE antigen: a promising vaccine strategy against PEDV[J]. Viruses, 9, 312-. doi: 10.3390/v9110312
-
Xu M, Chang S, Ding Z, Gao HW, Wan JY, Liu WS, Liu LN, Gao Y, Xu J, 2008: Genomic analysis of Newcastle disease virus strain NA-1 isolated from geese in China[J]. Adv Virol, 153, 1281-1289. doi: 10.1007/s00705-008-0115-9
-
Xue C, Cong Y, Yin R, Sun Y, Ding C, Yu S, Liu X, Hu S, Qian J, Yuan Q, 2017: Genetic diversity of the genotype Ⅶ Newcastle disease virus: identification of a novel Ⅶj sub-genotype[J]. Virus Genes, 53, 1-8. doi: 10.1007/s11262-017-1428-0
-
Yang G, Jiang Y, Tong P, Li C, Yang W, Hu J, Ye L, Gu W, Shi C, Shan B, 2017: Alleviation of enterotoxigenic Escherichia coli challenge by recombinant Lactobacillus plantarum expressing a FaeG- and DC-targeting peptide fusion protein[J]. Benef Microbes, 8, 379-391. doi: 10.3920/BM2016.0116
-
Zhang Y, Zhou M, Li Y, Luo Z, Chen H, Cui M, Fu ZF, Zhao L, 2017: Recombinant rabies virus with the glycoprotein fused with a DC-binding peptide is an efficacious rabies vaccine[J]. Oncotarget, 9, 831-841. doi: 10.18632/oncotarget.23160
-
Zhao J, Yang H, Xu H, Ma Z, Zhang G, 2017: Efficacy of an inactivated bivalent vaccine against the prevalent strains of Newcastle disease and H9N2 avian influenza[J]. Virol J, 14, 56-. doi: 10.1186/s12985-017-0723-7