Citation: Meng Miao, Gang Deng, Xiaobei Xiong, Yang Qiu, Wenda Huang, Meng Yuan, Fei Yu, Shimei Bai, Xi Zhou, Xiaolu Zhao. Enterovirus 71 3C proteolytically processes the histone H3 N-terminal tail during infection .VIROLOGICA SINICA, 2022, 37(2) : 314-317.  http://dx.doi.org/10.1016/j.virs.2022.02.006

Enterovirus 71 3C proteolytically processes the histone H3 N-terminal tail during infection

  • Highlights
    1. The N-terminal tail of histone H3 is specifically cleaved during EV71 infection.
    2. Viral protease 3C is identified as a protease responsible for proteolytically processing the N-terminal H3 tail.
    3. Our finding reveals a new epigenetic regulatory mechanism for Enterovirus 71 in virus-host interactions.

  • 加载中
  • 10.1016j.virs.2022.02.006-ESM.docx
    1. Amineva, S.P., Aminev, A.G., Palmenberg, A.C., Gern, J.E., 2004. Rhinovirus 3C protease precursors 3CD and 3CD' localize to the nuclei of infected cells. J. Gen. Virol. 85, 2969–2979.

    2. Bhaumik, S.R., Smith, E., Shilatifard, A., 2007. Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008–1016.

    3. Britton, L.M., Sova, P., Belisle, S., Liu, S., Chan, E.Y., Katze, M.G., Garcia, B.A., 2014. A proteomic glimpse into the initial global epigenetic changes during HIV infection. Proteomics 14, 2226–2230.

    4. Clark, M.E., Hammerle, T., Wimmer, E., Dasgupta, A., 1991. Poliovirus proteinase 3C converts an active form of transcription factor IIIC to an inactive form: a mechanism for inhibition of host cell polymerase III transcription by poliovirus. EMBO J. 10, 2941–2947.

    5. Clark, M.E., Lieberman, P.M., Berk, A.J., Dasgupta, A., 1993. Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Mol. Cell Biol. 13, 1232–1237.

    6. Etchison, D., Milburn, S.C., Edery, I., Sonenberg, N., Hershey, J.W., 1982. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J. Biol. Chem. 257, 14806–14810.

    7. Fonseca, G.J., Thillainadesan, G., Yousef, A.F., Ablack, J.N., Mossman, K.L., Torchia, J., Mymryk, J.S., 2012. Adenovirus evasion of interferon-mediated innate immunity by direct antagonism of a cellular histone posttranslational modification. Cell Host Microbe 11, 597–606.

    8. Genin, P., Lin, R., Hiscott, J., Civas, A., 2012. Recruitment of histone deacetylase 3 to the interferon-A gene promoters attenuates interferon expression. PLoS One 7, e38336.

    9. Guo, Q., Sidoli, S., Garcia, B.A., Zhao, X., 2018. Assessment of quantification precision of histone post-translational modifications by using an ion trap and down to 50 000 cells as starting material. J. Proteome Res. 17, 234–242. Jan 5.

    10. Han, X., Li, X., Yue, S.C., Anandaiah, A., Hashem, F., Reinach, P.S., Koziel, H., Tachado, S.D., 2012. Epigenetic regulation of tumor necrosis factor alpha (TNFalpha) release in human macrophages by HIV-1 single-stranded RNA (ssRNA) is dependent on TLR8 signaling. J. Biol. Chem. 287, 13778–13786.

    11. Horwitz, G.A., Zhang, K., McBrian, M.A., Grunstein, M., Kurdistani, S.K., Berk, A.J., 2008. Adenovirus small e1a alters global patterns of histone modification. Science 321, 1084–1085.

    12. Huang, H., Sabari, B.R., Garcia, B.A., Allis, C.D., Zhao, Y., 2014. SnapShot: histone modifications. Cell 159, 458–458.e1.

    13. Kitamura, N., Semler, B.L., Rothberg, P.G., Larsen, G.R., Adler, C.J., et al., 1981. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291, 547–553.

    14. Kouzarides, T., 2007. Chromatin modifications and their function. Cell 128, 693–705.

    15. Lieberman, P.M., 2006. Chromatin regulation of virus infection. Trends Microbiol. 14, 132–140.

    16. Matthews, D.A., Smith, W.W., Ferre, R.A., Condon, B., Budahazi, G., et al., 1994. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77, 761–771.

    17. McMinn, P.C., 2002. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol. Rev. 26, 91–107.

    18. Murata, T., Kondo, Y., Sugimoto, A., et al., 2012. Epigenetic histone modification of Epstein-Barr virus BZLF1 promoter during latency and reactivation in Raji cells. J. Virol. 86, 4752–4761.

    19. O'Connor, C.M., DiMaggio Jr., P.A., Shenk, T., Garcia, B.A., 2014. Quantitative proteomic discovery of dynamic epigenome changes that control human cytomegalovirus(HCMV) infection. Mol. Cell. Proteomics 13, 2399–2410.

    20. Oberste, M.S., Maher, K., Kilpatrick, D.R., Pallansch, M.A., 1999. Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J. Virol. 73, 1941–1948.

    21. Placek, B.J., Huang, J., Kent, J.R., Dorsey, J., Rice, L., Fraser, N.W., Berger, S.L., 2009. The histone variant H3.3 regulates gene expression during lytic infection with herpes simplex virus type 1. J. Virol. 83, 1416–1421.

    22. Rose, J.K., Trachsel, H., Leong, K., Baltimore, D., 1978. Inhibition of translation by poliovirus: inactivation of a specific initiation factor. Proc. Natl. Acad. Sci. U.S.A. 75, 2732–2736.

    23. Schmidt, N.J., Lennette, E.H., Ho, H.H., 1974. An apparently new enterovirus isolated from patients with disease of the central nervous system. J. Infect. Dis. 129, 304–309.

    24. Sharma, R., Raychaudhuri, S., Dasgupta, A., 2004. Nuclear entry of poliovirus protease polymerase precursor 3CD: implications for host cell transcription shutoff. Virology 320, 195–205.

    25. Shih, S.R., Chiang, C., Chen, T.C., Wu, C.N., Hsu, J.T., Lee, J.C., Hwang, M.J., Li, M.L., Chen, G.W., Ho, M.S., 2004. Mutations at KFRDI and VGK domains of enterovirus 71 3C protease affect its RNA binding and proteolytic activities. J. Biomed. Sci. 11, 239–248.

    26. Solomon, T., Lewthwaite, P., Perera, D., Cardosa, M.J., McMinn, P., Ooi, M.H., 2010. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect. Dis. 10, 778–790.

    27. Weidman, M.K., Yalamanchili, P., Ng, B., Tsai, W., Dasgupta, A., 2001. Poliovirus 3C protease-mediated degradation of transcriptional activator p53 requires a cellular activity. Virology 291, 260–271.

    28. Weng, K.F., Li, M.L., Hung, C.T., Shih, S.R., 2009. Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation. PLoS Pathog. 5, e1000593.

  • 加载中

Article Metrics

Article views(4490) PDF downloads(17) Cited by()

Related
Proportional views

    Enterovirus 71 3C proteolytically processes the histone H3 N-terminal tail during infection

      Corresponding author: Meng Miao, miaom@whu.edu.cn
      Corresponding author: Xi Zhou, zhouxi@whu.edu.cn
      Corresponding author: Xiaolu Zhao, zhaoxiaolu@whu.edu.cn
    • a Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
    • b Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
    • c Laboratory of RNA Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China

    Abstract: Highlights
    1. The N-terminal tail of histone H3 is specifically cleaved during EV71 infection.
    2. Viral protease 3C is identified as a protease responsible for proteolytically processing the N-terminal H3 tail.
    3. Our finding reveals a new epigenetic regulatory mechanism for Enterovirus 71 in virus-host interactions.

    Reference (28) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return